The Integrated Contaminant Elution and Tracer Test Toolkit ICET³: Improved Characterization of Mass Transfer, Attenuation, and Mass Removal

> Mark L. Brusseau University of Arizona

SRP Risk eLearning Webinar – Analytical Tools and Methods: Session III – Fate and Transport of Contaminants

June 12 2017

Outline

- What are contaminant elution tests (CET)
- CET advantages and applications
- Implementation
- Case study

Contaminant Elution Test

- AKA
 - induced-gradient contaminant elution test
 - contaminant pumping test
 - mass discharge test

Monitor COC concentration in fluid discharge during groundwater (or soil vapor) extraction

CET Data

- Qualitative analysis- Landmarks
- Quantitative analysis- Mathematical modeling

Data from Brusseau et al., 2007

Advantages

- Induced gradient stresses system, enhancing hydraulic and concentration gradients
 - Improved sensitivity for measuring mass transfer and attenuation
- Integrated measurement over interrogated domain
 - Reduced uncertainty from spatial variability
- Modified CET clean water injection to displace resident solution (background plume)
 - Delineation of local fluxes and associated processes
- ICET³ tracer application
 - Characterization of specific processes and associated rates
- Rapid and relatively low cost

Outcomes

- Improved characterization of mass transfer, attenuation, and mass removal processes
 - increased accuracy of risk assessments
 - improved CSM and RI/FS
 - enhanced remedial action design
- Ultimately, improve decision making for cost-effective site management
- Integrate with other site characterization tools

- Measure contaminant mass discharge (CMD)
- Characterize mass-removal and persistence behavior
- Delineate specific mass-transfer & attenuation processes
- Determine process-specific rate coefficients
- Estimate resident contaminant mass
- Test prospective remedial actions

Measure contaminant mass discharge (CMD)

Data from Brusseau et al., 2011

Assess remedial action performance

Note: CMD in ROD as a RAO for Commencement Bay-South Tacoma Channel Superfund site

Characterize mass-removal and persistence behavior

 Qualitative analysis:

Examine elution profiles to assess Type behavior

- Characterize mass-removal and persistence behavior
 - Quantitative analysis: CMDR-MR relationship

From Brusseau, 2013

Delineate specific mass-transfer & attenuation processes
>>use of tracer suite

- Straightforward for systems with a single predominant massremoval process

- Difficult for multiprocess systems

•Implement tracer-test component

Use of tracer suite to characterize specific processes and associated rate coefficients

- <u>Multiple NRTs with</u> <u>different D_0 = diffusive</u> mass transfer

- <u>Sorbing tracer</u> = retardation

<u>Transformation</u>
<u>tracers</u> = bio/chem
degradation

- <u>NAPL partitioning</u> <u>tracers</u> = NAPL characterization

• Estimate resident contaminant mass

Data from Brusseau et al., 2013

- Typically unknown and difficult to determine

- Fit sourcedepletion function to temporal CMD data

Implementation

- Well-field configuration is key design factor
 - Based on test objectives

- Test of EW isolation from surrounding plume

Case Study: TIAA Superfund Site

- NPL Listing in 1983

-COC = TCE

- Regional aquifer impacted

- Multiple OUs and remedial operations

GW Pump & Treat Operation

High-resolution data set to characterize mass removal

UA-TIAA Study

Objectives: Understand T&F behavior at site and improve remediation effectiveness

- Activities \bullet
 - Characterization- ICET³
 - Laboratory Experiments
 - Mathematical Modeling
 - Evaluate Conceptual Site Model
 - Pilot Tests of Remedial Technologies

University of Arizona Study Will Help Accelerate Groundwater Cleanup

The Air Force and Hughes Missile Systems Company have joined with the University of Arizona for a cooperative study that should have a positive impact on cleaning trichloroethylene (TCE)-contaminated groundwater under Air Force Plant 44 (AFP-44). The study will provide a better understanding of water and contaminant movement in the ground under the plant site.

The UA's Soil and Water Sciences Department and Department of Hydrology and Water Resources will perform the study. The study involves injecting tracer materials at levels which are safe and non-toxic through existing wells into the aquifer - the area below ground where water collects - and then pumping the tracers through existing extraction wells to the groundwater treatment plant (see diagram on reverse side of this page).

Tracers Will be Safe

Tracers can be salts, dyes, gases or very small particles that are dissolved in water and released into a small area in the ground. Tracers planned for this study have been used previously in fieldtracer studies and, at the

The calcium concentration will be 40 times less than the concentration in milk. Benzoate - Commonly used as a food preservative, and produced naturally by most berries. Dextran -A sugar used as a major component in soft candies. Sodium Fluorescein - A fluorescent dye known as Yellow Dye No. 8;

Tracer Injection

Why Use Tracers? The current groundwate treatment system at AFP 44 has decreased the size of the contamination plume by about 70 percent. However, with a lower volume of TCE in the groundwater, less is being removed each day even though the amount of groundwater being cleaned is the same. By injecting tracers into the aquifer, scientists can track groundwater and contaminant flow. They can then use this information to make adjustments to the groundwater treatment pumping system to improve its effectiveness and efficiency, which will help to speed the removal of TCE

Tracers Are Common -Tracking groundwater flow by using tracers is a common practice. Their safety and ease of use make them the best choice for this type of study. At the low concentration levels planned to be used, tracers are non-toxic but still easy to detect using available equipment and techniques.

nformation or questions? — Call Wright-Patterson Air Force Base (1-800-982-7248) or Hughes Missile Systems Company (1-602-794-7477)

levels to be used, will be

are: Bromide - A

will be released into the solution

when the bromide salt is dissolved.

dissolved salt widely

safe to human health

and the environment.

The selected tracers

- Presence of higher COC concs in major low-K unit
- Diffusive mass transfer (back diffusion) influencing mass removal

• Presence of DNAPL in source zone

Mass removal mediated by NAPL dissolution

>>> Numerical Modeling

- Impact of NAPL dissolution rate coefficient

 Information obtained from ICET³ applications used to support 3-D plume-scale modeling

- Simulation showing impact of DNAPL in source zones

Comparison of the Simulated Influent TCE Conc. at Treatment Plant with the Observed Data

Three-Dimensional Distribution of Hydraulic Conductivities at AFP-44 Site

>>> Modeling used to predict impact of source-zone remediation

- ISCO (permanganate) implemented for source zones
- Measure CMD before and after ISCO

- Comparison to plume-scale aggregate CMD
- Reasonable correspondence

Summary

- Utility of contaminant elution and tracer tests for site characterization
- Just one component of full site assessment

Thank you

Acknowledgements

- NIEHS SBRP, DOD SERDP, DOD ESTCP, US Air Force, Tucson Airport Authority, US EPA
- Tim Allen, Fred Brinker, Bill DiGuiseppi, Jim Hatton, Manfred Plaschke, Kelly Reis, Bill Taylor, George Warner
- Nicole Nelson-Sweetland, Jon Rohrer, Zhihui Zhang, Zhilin Guo, KC Carroll, Ann Russo, Candice Morrison, other UA students

A MARINA A MARINA

References

- Blue, J.E., Brusseau, M.L., Srivastava, R. 1998. Simulating tracer and resident contaminant transport to investigate the reduced efficiency of a pump-and-treat operation. In: Herbert, M., Kovar, K. (Eds.), Groundwater Quality: Remediation and Protection. IAHS Publ. vol. 250, 537–543.
- Brusseau, M.L., Nelson, N.T., Zhang, Z., Blue, J.E., Rohrer, J., and Allen, T. 2007. Source-zone characterization of a chlorinated-solvent contaminated superfund site in Tucson, AZ. *J. Contam. Hydrol.*, 90, 21-40.
- Brusseau, M.L., Carroll, K.C., Allen, T., Baker, J., DiGuiseppi, W., Hatton, J., Morrison, C., Russo, A., and Berkompas, J. 2011. The impact of in-situ chemical oxidation on contaminant mass discharge: linking source-zone and plume-scale characterizations of remediation performance. *Environ. Sci. Technol.*, 45, 5352-5358.
- Brusseau, M.L. 2013. Use of historical pump-and-treat data to enhance site characterization and remediation performance assessment. *Water Air Soil Poll.*, 224, article 1741.
- Brusseau, M.L., Matthieu III, D.E., Carroll, K.C., Mainhagu, J., Morrison, C., McMillan, A., Russo, A., Plaschke, M. 2013. Characterizing long-term contaminant mass discharge and the relationship between reductions in discharge and reductions in mass for DNAPL source areas. *J. Contam. Hydrol.*, 149, 1–12.
- Brusseau, M.L. and Guo, Z. 2014. Assessing contaminant-removal conditions and plume persistence through analysis of long-term pump-and-treat data. J. *Contamin. Hydrol.*, 164: 16-24.

References

- DiFilippo, E.L., Brusseau, M.L. 2008. Relationship between mass flux reduction and sourcezonemass removal: analysis of field data. *J. Contam. Hydrol.*, 98, 22–35.
- Guo, Z. and Brusseau, M.L. 2017. The impact of well-field configuration and permeability heterogeneity on contaminant mass removal and plume persistence. *J. Hazard. Mat.*, 333, 109-115.
- Guo, Z. and Brusseau, M.L. 2017. Modified well-field configurations for improved performance of contaminant elution and tracer tests. *Water Air Soil Poll*. (in press).
- Nelson, N.T., Brusseau, M.L. 1996. Field study of the partitioning tracer method for detection of dense nonaqueous phase liquid in a trichloroethenecontaminated aquifer. *Environ. Sci. Technol.* 30, 2859–2863.
- Nelson, N.T., Hu, Q., and Brusseau, M.L. 2003. Characterizing the contribution of diffusive mass transfer to solute transport in sedimentary aquifer systems at laboratory and field scales. *J. Hydrol.*, 276, 275-286.
- Zhang, Z. and Brusseau, M.L. 1999. Nonideal transport of reactive solutes in heterogeneous porous media. 5. Simulating regional-scale behavior of a trichloroethene plume during pump-and-treat remediation. *Water Resour. Res.*, 35: 2921-2935.