LESSONS LEARNED FROM PERFORMANCE EVALUATION STUDIES

Ruth L. Forman Quality Assurance Specialist/Principal Rock J. Vitale, CPC Technical Director or Chemistry/Principal Environmental Standards, Inc., 1140 Valley Forge Road, Valley Forge, PA 19482

ABSTRACT

Performance Evaluation (PE) samples are routinely utilized by both the regulatory and regulated communities to demonstrate a laboratory's proficiency in performing a given analytical method. PE samples are submitted to laboratories for a wide variety of regulatory programs and are typically prepared in deionized water, clean soil, or other prepared media. The laboratory's reported results are compared to the known identities and concentrations of target analytes in the PE samples. The evaluation of the laboratory's performance is typically based upon the percentage of analytes the laboratory successfully recovered within a defined range of acceptance limits. However, typically executed PE studies do not provide an indication of the laboratory's ability to successfully identify and quantitate target analytes in a complex matrix or test other non-analytical aspects of the laboratory's operation.

This presentation will focus on the authors' experience in conducting PE studies for a multi-state pipeline project and will present the findings relative to these studies. Information gleaned from the PE studies relative to the evaluation of the laboratory's performance will be discussed. Furthermore, observations regarding the laboratories' performance in analyzing multi-phasic samples will be presented.

INTRODUCTION

Performance Evaluation (PE) samples are test samples that are prepared by spiking known concentrations of select analytes into a well-characterized matrix. Typically, PE samples are made in a single matrix such as an aqueous, solid, or an oil matrix. PE samples can be distributed as single-blind or as double-blind samples. For single-blind PE samples, the laboratory is informed that they will be receiving a test sample. In the case of double-blind PE samples, the test samples are given fictitious sample identifications and are submitted concurrently with other project samples to the laboratory. That is, for double-blind PEs samples, the laboratory does not know that the fictitiously labeled PE sample is a test sample. Typically, PE samples are utilized to determine a laboratory's accuracy as it relates to the execution of a particular analytical methodology.

The authors have participated in the maintenance of a number of corporate laboratory programs in the capacity of performing quality assurance/quality control (QA/QC) oversight for these programs. In these roles, the authors have had experience in procuring, distributing, and evaluating the results from PE studies. However, this paper will focus on the lessons learned from one particular project.

As the QA/QC oversight contractor on a 19,000 mile pipeline that stretches across nine of the United States, quarterly PE samples have been submitted to the seven project laboratories for approximately three years. At the onset of the project, a laboratory specification manual was prepared that identified prescribed SW-846 preparative and analytical methods for the program execution. Where method ambiguities existed, program-specific method requirements were established. In addition, the laboratory specification manual listed the target analytes, associated reporting limits, QC requirements (including frequency, QC limits, acceptance criteria and corrective action), and data deliverable specifications (electronic and hard copy). By establishing a corporate laboratory specification manual that all seven project laboratories were required to follow, data inconsistencies were minimized and data comparability was enhanced.

Typically, PE samples are utilized to demonstrate method proficiency based upon the accuracy of the laboratoryreported results compared to the known certified values. However, more information can be gleaned from a PE study than a laboratory's demonstration of method proficiency, particularly in the case when a laboratory specification manual is utilized for a laboratory program and when full data package deliverables are requested to substantiate the reported analytical results. Information relative to the evaluation of the laboratory's technical and administrative services, sample login and receipt, data package preparation, method compliance, and quality assurance can also be evaluated.¹ In addition, in this particular project, the authors were able to utilize the ongoing PE studies to identify laboratory specific trends, program specific trends, and to determine overall precision amongst the project laboratories.² These trends have been utilized to provide feedback to the project laboratories to enhance their overall performance.

Careful consideration was given to the preparation of the PE samples for the subject project. The intent was to test the project laboratories' ability to analyze samples that were similar in matrix and composition to the project samples for the analyses of interest. As such, the PE samples were custom-prepared by a reputable PE vendor for the analytes of interest (volatiles, polyaromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], and metals [including mercury]). The PE samples were soil samples that were carefully manufactured by mixing clay and sand in proper proportion and sieve size such that the real world matrix would be stable, homogeneous, and suitable for application of the spiked analytes. The PE samples were also moistened with deionized water to make a multiphasic test sample (*viz.*, moist soil). The analytes were spiked into the PE samples at a concentration roughly three to five times the reporting limits. The project reporting limits were based upon state cleanup action levels.

Since the PE samples were custom-made for the subject project, verification of the manufacturing process was important. Prior to distribution, the PE vendor verified (at their own production facility) that the recoveries of the spiked analytes in the PE samples were acceptable for distribution to the project laboratories. In addition to the distribution of the custom-made pre-moistened soil PE samples to the project laboratories, the PE samples were submitted to three referee laboratories, with one of these referee laboratories receiving the PE samples in triplicate. Use of the referee laboratories allowed for additional independent verification of the manufacturing process. It should be noted that the project laboratory specification manual was distributed to the referee laboratories to prescriptively follow for the analysis of the PE samples.

All PE samples were carefully shipped to the project laboratories and referee laboratories simultaneously. The PE samples were shipped via overnight courier in an iced cooler, under Chain-of-Custody. For single-blind PE sample rounds, the bottleware for the PE samples was provided by the PE provider. For double-blind PE sample rounds, the bottleware for the PE samples originated from the project laboratory via a request from the project sampling teams.

PE sample results are typically evaluated by comparing the laboratory-reported result to the certified true value and determining the accuracy of the reported analytical results as a percentage relative to the true or certified value. For the subject project, the PE sample results were evaluated in this manner and in two other ways. The first way was to compare the laboratory-reported result to the mean result of the referee laboratories and determine a percentage. The second way was to compare the laboratory-reported result to the historical average result and determine a percentage. The historical average result was based upon the large database of results obtained from the PE supplier for the analyte of interest from previous PE samples that they prepared and distributed in a similar manner.

The limits utilized for evaluating the PE samples were comparable to matrix spike limits typically observed for the analytical methods. That is, for the volatile organic analysis, the recovery limits of 70-130% were utilized. For the PAH analysis, recovery acceptance limits of 30-130% were utilized. For the PCB fraction, recovery acceptance limits of 60-130% were utilized. For the metals fraction, recovery acceptance limits of 75-125% were utilized. Finally, for the mercury fraction, recovery acceptance limits of 80-120% were utilized.

RESULTS

During the last two quarters of 1998, two single-blind PE sample studies were conducted for the subject project. The results for the two studies are tabulated as follows. The first table in each of the two PE studies is a comparison of the laboratory-reported results against the certified true value. The second set of tables in each of the two PE studies is a comparison of the laboratory-reported results against the certified true value. The mean referee-reported results. The third set of tables in each of the two PE studies is a comparison of the laboratory-reported results against the mean referee-reported results. The third set of tables in each of the two PE studies is a comparison of the laboratory-reported results against the historical average (as previously discussed).

		La	b A	La	bВ	La	b C	La	b D	La	b E	La	b F	La	b G
Compound/Analyte	True	Reporte	Recover	Reporte	Recover	Reporte	Recover	Reporte	Recover	Reporte	Recover	Reporte	Recover	Reporte	Recover
(reporting units) ⁴	Valu	d Value	У	d Value	У	d Value	У	d Value	У	d Value	У	d Value	У	d Value	У
	е														
benzene (µg/kg)	50	43	86.00%	51	102.00%	21	42.00%	26	52.00%	63	126.00%	37	74.00%	50	100.00%
1,1,1-trichloroethane	75	62	82.67%	75	100.00%	29	38.67%	33	44.00%	79	105.33%	ND		27	36.00%
(µg/kg)															
1,1,2,2-tetrachloro-	97	40	41.24%	92	94.85%	53	54.64%	76	78.35%	3		110	113.40%	45	46.39%
ethane (µg/kg)															
carbon tetrachloride	79	53	67.09%	71	89.87%	30	37.97%	32	40.51%	63	79.75%	53	67.09%	33	41.77%
(µg/kg)															
chlorobenzene (µg/kg)	63	58	92.06%	77	122.22%	27	42.86%	43	68.25%	72	114.29%	82	130.16%	59	93.65%
ethylbenzene (µg/kg)	25	24	96.00%	23	92.00%	10	40.00%	16	64.00%	31	124.00%	30	120.00%	24	96.00%
4-methyl-2-pentanone	247	170	68.83%	230	93.12%	190	76.92%	110	44.53%	230	93.12%	290	117.41%	82	33.20%
(µg/kg)															
tetrachloroethene	44	45	102.27%	48	109.09%	18	40.91%	18	40.91%	51	115.91%	49	111.36%	48	109.09%
(µg/kg)															
trichloroethene (µg/kg)	35	38	108.57%	57	162.86%	21	60.00%	20	57.14%	69	197.14%	31	88.57%	33	94.29%
total xylenes (µg/kg)	198	190	95.96%	260	131.31%	85	42.93%	130	65.66%	230	116.16%	267	134.85%	210	106.06%
Aroclor 1248 (µg/kg)	342	55	16.08%	310	90.64%	240	70.18%	200	58.48%	270	78.95%	329	96.20%	264	77.19%
anthracene (µg/kg)		71		880	25.07%	820	23.36%	82		500	14.25%	470	13.39%	1,300	37.04%
	3,510														
chrysene (µg/kg)		490	24.02%	1,300	63.73%	560	27.45%	170		840	41.18%	1,300	63.73%	1,500	73.53%
	2,040	500	00.040/	4 700	05 400/	000	05 000/	100		4 400	50.040/	4 000	00.070/	0.400	00.400/
benzo(k)fluoranthene	0.040	590	22.61%	1,700	65.13%	660	25.29%	160		1,400	53.64%	1,800	68.97%	2,100	80.46%
(µg/kg)	2,610	000		4 000	07 400/	750	47 400/	400		4 400	00.040/	4 000	00.000/	0.000	
benzo(a)pyrene (µg/kg)	4 070	380		1,200	27.46%	750	17.16%	180		1,400	32.04%	1,000	22.88%	2,000	45.77%
indepa(1.0.0. ad) as more	4,370	200	40.400/	1 100	20.400/	000	00.000/	100		740	04.050/	4 000	00 500/	2 000	00 4 40/
indeno(1,2,3-cd)pyrene	2 000	380	13.19%	1,100	38.19%	690	23.96%	180		710	24.05%	1,800	62.50%	2,000	69.44%
(µg/kg)	2,880	700	20.070/	2 000	F0 760/	000	24 4 00/	270		1 100	20 570/	2 400	64 5 20/	2 600	60.000/
nuoranimene (µg/kg)	2 7 2 0	700	20.97%	2,000	55.70%	900	24.19%	370		1,100	29.57%	2,400	04.32%	2,000	09.09%
paphthalapa (ug/kg)	3,720	1 200	20 260/	2 400	FO 170/	1 500	22 610/	000	21 200/	1 900	20 1 20/	1 500	22 610/	2 700	EQ 700/
naphinalene (µg/kg)	4 600	1,300	20.20%	2,400	52.1770	1,500	32.01%	900	21.30%	1,000	39.13%	1,500	32.01%	2,700	36.70%
antimony (ma/ka)	4,000	32.0	22 70%	46.0	31 710/	57 5	12 50%	66 1	18 06%	21.2	22 10%	68.4	50 67%	47.0	2/ 210/
animony (mg/kg)	14.5	9.7	66 00%	40.3	101 38%	10.0	75 17%	14.5	100 00%	14.6	100 60%	16.4	113 10%	47.0 14.4	00 31%
barium (mg/kg)	14.5	280	56 15%	14.7	00 03%	350	72 38%	406	81 85%	3/8	70 16%	/76	05 07%	14.4	80.85%
benyllium (mg/kg)	6.06	200 // 1	67 66%	58	90.9370 95 71%	1 T	77 56%	50	07.36%	55	00.76%	63	103 06%	56	00.0370
cadmium (mg/kg)	21 3	12	56 34%	20.5	96 24%	14 3	67 14%	18.6	87 32%	10.4	48 83%	21.0	98 59%	17.5	82 16%
chromium (mg/kg)	234	150	64 10%	20.0	96 15%	182	77 78%	229	97.86%	204	87 18%	255	108 97%	220	94 02%
lead (mg/kg)	543	340	62 62%	505	93.00%	372	68 51%	501	92 27%	442	81 40%	555	102 21%	472	86.92%
mercury (mg/kg)	36.5	28.0	76 71%	21.6	59 18%	20.0	54 79%	34.3	93 97%	30.7	84 11%	34 5	94 52%	30.4	83 29%
nickel (ma/ka)	292	150	51.37%	269	92 12%	186	63 70%	241	82 53%	186	63 70%	273	93 49%	239	81 85%
silver (mg/kg)	413	140	33.90%	114	27.60%	275	66.59%	344	83.29%	275	66.59%	428	103.63%	233	56.42%

ROUND 1. Summary of Laboratory Results and Recoveries

		La	b A	La	b B	La	b C	La	b D	La	b E	La	b F	Lab G	
Compound/Analyte	Referee	Reporte	Recover												
(reporting units) ⁴	Mean	d Value	У												
benzene (µg/kg)	28	43	153.57%	51	182.14%	21	75.00%	26	92.86%	63	225.00%	37	132.14%	50	178.57%
1,1,1-trichloroethane	39	62	158.97%	75	192.31%	29	74.36%	33	84.62%	79	202.56%	ND		27	69.23%
(µg/kg)															
1,1,2,2-tetrachloro-	51	40	77.97%	92	179.34%	53	103.31%	76	148.15%	3		110	214.42%	45	87.72%
ethane (µg/kg)															
carbon tetrachloride	39	53	136.95%	71	183.46%	30	77.52%	32	82.69%	63	162.79%	53	136.95%	33	85.27%
(µg/kg)															
chlorobenzene (µg/kg)	40	58	143.92%	77	191.07%	27	67.00%	43	106.70%	72	178.66%	82	203.47%	59	146.40%
ethylbenzene (µg/kg)	16	24	150.00%	23	143.75%	10	62.50%	16	100.00%	31	193.75%	30	187.50%	24	150.00%
4-methyl-2-pentanone	90	170	188.89%	230	255.56%	190	211.11%	110	122.22%	230	255.56%	290	322.22%	82	91.11%
(µg/kg)															
tetrachloroethene	24	45	189.87%	48	202.53%	18	75.95%	18	75.95%	51	215.19%	49	206.75%	48	202.53%
(µg/kg)															
trichloroethene (µg/kg)	21	38	183.57%	57	275.36%	21	101.45%	20	96.62%	69	333.33%	31	149.76%	33	159.42%
total xylenes (µg/kg)	138	190	137.98%	260	188.82%	85	61.73%	130	94.41%	230	167.03%	267	193.90%	210	152.51%
Aroclor 1248 (µg/kg)	242	55	22.73%	310	128.10%	240	99.17%	200	82.64%	270	111.57%	329	135.95%	264	109.09%
anthracene (µg/kg)	820	71		880	107.32%	820	100.00%	82	10.00%	500	60.98%	470	57.32%	1,300	158.54%
chrysene (µg/kg)	1,447	490	33.86%	1,300	89.84%	560	38.70%	170	11.75%	840	58.05%	1,300	89.84%	1,500	103.66%
benzo(k)fluoranthene	1,737	590	33.97%	1,700	97.87%	660	38.00%	160		1,400	80.60%	1,800	103.63%	2,100	120.90%
(µg/kg)															
benzo(a)pyrene	1,755	380	21.65%	1,200	68.38%	750	42.74%	180	10.26%	1,400	79.77%	1,000	56.98%	2,000	113.96%
(µg/kg)															
indeno(1,2,3-	1,575	380	24.13%	1,100	69.84%	690	43.81%	180	11.43%	710	45.08%	1,800	114.29%	2,000	126.98%
cd)pyrene (µg/kg)															
fluoranthene (µg/kg)	2,250	780	34.67%	2,000	88.89%	900	40.00%	370	16.44%	1,100	48.89%	2,400	106.67%	2,600	115.56%
naphthalene (µg/kg)	2,325	1,300	55.91%	2,400	103.23%	1,500	64.52%	980	42.15%	1,800	77.42%	1,500	64.52%	2,700	116.13%
antimony (mg/kg)	47	32.0	68.09%	46.9	99.79%	57.5	122.34%	66.1	140.64%	31.3	66.60%	68.4	145.53%	47.0	100.00%
arsenic (mg/kg)	12.1	9.7	80.17%	14.7	121.49%	10.9	90.08%	14.5	119.83%	14.6	120.66%	16.4	135.54%	14.4	119.01%
barium (mg/kg)	402	280	69.65%	451	112.19%	359	89.30%	406	101.00%	348	86.57%	476	118.41%	401	99.75%
beryllium (mg/kg)	5.40	4.1	75.93%	5.8	107.41%	4.7	87.04%	5.9	109.26%	5.5	101.85%	6.3	116.67%	5.6	103.70%
cadmium (mg/kg)	15.2	12	78.95%	20.5	134.87%	14.3	94.08%	18.6	122.37%	10.4	68.42%	21.0	138.16%	17.5	115.13%
chromium (mg/kg)	194	150	77.32%	225	115.98%	182	93.81%	229	118.04%	204	105.15%	255	131.44%	220	113.40%
lead (mg/kg)	476	340	71.37%	505	106.00%	372	78.09%	501	105.16%	442	92.78%	555	116.50%	472	99.08%
mercury (mg/kg)	34.5	28.0	81.16%	21.6	62.61%	20.0	57.97%	34.3	99.42%	30.7	88.99%	34.5	100.00%	30.4	88.12%
nickel (mg/kg)	208	150	72.18%	269	129.45%	186	89.51%	241	115.98%	186	89.51%	273	131.38%	239	115.01%
silver (mg/kg)	190	140	73.53%	114	59.87%	275	144.43%	344	180.67%	275	144.43%	428	224.79%	233	122.37%

ROUND 1 (Cont.) Summary of Laboratory Results and Recoveries

NOTE:

ND - Not Detected.

		Lab A		Lab B		Lab C		La	b D	Lab E		Lab F		La	b G
Compound/Analvte	Historic	Reporte	Recover												
(reporting units) ⁴	al	d Value	У												
	Average		-				-				-		-		-
benzene (µg/kg)	51	43	84.81%	51	100.59%	21	41.42%	26	51.28%	63	124.26%	37	72.98%	50	98.62%
1,1,1-trichloroethane	76	62	82.01%	75	99.21%	29	38.36%	33	43.65%	79	104.50%	ND		27	35.71%
(µg/kg)															
1,1,2,2-tetrachloro-	100	40	40.20%	92	92.46%	53	53.27%	76	76.38%	3		110	110.55%	45	45.23%
ethane (µg/kg)															
carbon tetrachloride	80	53	66.08%	71	88.53%	30	37.41%	32	39.90%	63	78.55%	53	66.08%	33	41.15%
(µg/kg)															
chlorobenzene	65	58	89.37%	77	118.64%	27	41.60%	43	66.26%	72	110.94%	82	126.35%	59	90.91%
(µg/kg)															
ethylbenzene (µg/kg)	26	24	92.66%	23	88.80%	10	38.61%	16	61.78%	31	119.69%	30	115.83%	24	92.66%
4-methyl-2-pentanone	264	170	64.39%	230	87.12%	190	71.97%	110	41.67%	230	87.12%	290	109.85%	82	31.06%
(µg/kg)															
tetrachloroethene	45	45	99.12%	48	105.73%	18	39.65%	18	39.65%	51	112.33%	49	107.93%	48	105.73%
(µg/kg)															
trichloroethene	34	38	111.44%	57	167.16%	21	61.58%	20	58.65%	69	202.35%	31	90.91%	33	96.77%
(µg/kg)															
total xylenes (µg/kg)	207	190	91.79%	260	125.60%	85	41.06%	130	62.80%	230	111.11%	267	128.99%	210	101.45%
Aroclor 1248 (µg/kg)	287	55	19.16%	310	108.01%	240	83.62%	200	69.69%	270	94.08%	329	114.63%	264	91.99%
anthracene (µg/kg)	1,820	71		880	48.35%	820	45.05%	82		500	27.47%	470	25.82%	1,300	71.43%
chrysene (µg/kg)	1,510	490	32.45%	1,300	86.09%	560	37.09%	170	11.26%	840	55.63%	1,300	86.09%	1,500	99.34%
benzo(k)fluoranthene	1,920	590	30.73%	1,700	88.54%	660	34.38%	160		1,400	72.92%	1,800	93.75%	2,100	109.38%
(µg/kg)															
benzo(a)pyrene	2,590	380	14.67%	1,200	46.33%	750	28.96%	180		1,400	54.05%	1,000	38.61%	2,000	77.22%
(µg/kg)															
indeno(1,2,3-	2,330	380	16.31%	1,100	47.21%	690	29.61%	180		710	30.47%	1,800	77.25%	2,000	85.84%
cd)pyrene (µg/kg)															
fluoranthene (µg/kg)	2,610	780	29.89%	2,000	76.63%	900	34.48%	370	14.18%	1,100	42.15%	2,400	91.95%	2,600	99.62%
naphthalene (µg/kg)	2,460	1,300	52.85%	2,400	97.56%	1,500	60.98%	980	39.84%	1,800	73.17%	1,500	60.98%	2,700	109.76%
antimony (mg/kg)	42	32.0	76.19%	46.9	111.67%	57.5	136.90%	66.1	157.38%	31.3	74.52%	68.4	162.86%	47.0	111.90%
arsenic (mg/kg)	12.0	9.7	80.83%	14.7	122.50%	10.9	90.83%	14.5	120.83%	14.6	121.67%	16.4	136.67%	14.4	120.00%
barium (mg/kg)	451	280	62.08%	451	100.00%	359	79.60%	406	90.02%	348	77.16%	476	105.54%	401	88.91%
beryllium (mg/kg)	5.01	4.1	81.84%	5.8	115.77%	4.7	93.81%	5.9	117.76%	5.5	109.78%	6.3	125.75%	5.6	111.78%
cadmium (mg/kg)	18.1	12	66.30%	20.5	113.26%	14.3	79.01%	18.6	102.76%	10.4	57.46%	21.0	116.02%	17.5	96.69%
chromium (mg/kg)	220	150	68.18%	225	102.27%	182	82.73%	229	104.09%	204	92.73%	255	115.91%	220	100.00%
lead (mg/kg)	479	340	70.98%	505	105.43%	372	77.66%	501	104.59%	442	92.28%	555	115.87%	472	98.54%
mercury (mg/kg)	28.0	28.0	100.00%	21.6	77.14%	20.0	71.43%	34.3	122.50%	30.7	109.64%	34.5	123.21%	30.4	108.57%
nickel (mg/kg)	249	150	60.24%	269	108.03%	186	74.70%	241	96.79%	186	74.70%	273	109.64%	239	95.98%
silver (mg/kg)	340	140	41.18%	114	33.53%	275	80.88%	344	101.18%	275	80.88%	428	125.88%	233	68.53%

ROUND 1 (Cont.) Summary of Laboratory Results and Recoveries

NOTE:

ND - Not Detected.

		Lab A		Lab B		Lab	o C	La	b D	La	bΕ	Lab F		L	ab G
Compound/Analyte	True	Reporte	Recover	Reporte	Recovery										
(reporting units) ⁴	Value	d Value	у	d Value	-										
benzene (µg/kg)	149	100	67.11%	84	56.38%	46	30.87%	110	73.83%	120	80.54%	76	51.01%	88	59.06%
chlorobenzene (µg/kg)	44	38	85.78%	31	69.98%	24	54.18%	36	81.26%	37	83.52%	28	63.21%	32	72.23%
1,2-dichloroethane	78	68	87.63%	51	65.72%	34	43.81%	68	87.63%	74	95.36%	51	65.72%	54	69.59%
(µg/kg)															
ethylbenzene (µg/kg)	108	87	80.56%	67	62.04%	44	40.74%	86	79.63%	85	78.70%	68	62.96%	70	64.81%
tetrachloroethene	61	42	68.63%	33	53.92%	16	26.14%	30	49.02%	37	60.46%	21	34.31%	33	53.92%
(µg/kg)															
toluene (µg/kg)	89	69	77.44%	58	65.10%	37	41.53%	72	80.81%	72	80.81%	57	63.97%	57	63.97%
1,1,2-trichloroethane	53	52	98.30%	41	77.50%	32	60.49%	51	96.41%	46	86.96%	38	71.83%	38	71.83%
(µg/kg)															
trichloroethene (µg/kg)	129	88	68.22%	69	53.49%	33	25.58%	83	64.34%	90	69.77%	61	47.29%	73	56.59%
total xylenes (µg/kg)	328	260	79.27%	200	60.98%	140	42.68%	240	73.17%	250	76.22%	210	64.02%	210	64.02%
Aroclor 1254 (µg/kg)	181	150	82.87%	130	71.82%	160	88.40%	110	60.77%	130	71.82%	140	77.35%	170	93.92%
benzo(b)fluroanthene	4,240	3600	84.91%	2700	63.68%	3500	82.55%	670	15.80%	2900	68.40%	5,000	117.92%	3100	73.11%
(µg/kg)															
benzo(k)fluoranthene	1,910	1600	83.77%	1,200	62.83%	1400	73.30%	350	18.32%	1,500	78.53%	2,100	109.95%	1,400	73.30%
(µg/kg)															
benzo(a)pyrene	4,170	2900	69.54%	2,200	52.76%	2300	55.16%	470	11.27%	2,500	59.95%	3,800	91.13%	2,500	59.95%
(µg/kg)															
chrysene (µg/kg)	2,420	2300	95.04%	1,700	70.25%	1700	70.25%	490	20.25%	1700	70.25%	2,700	111.57%	1,800	74.38%
fluorene (µg/kg)	3,290	2800	85.11%	2,300	69.91%	3000	91.19%	740	22.49%	2,800	85.11%	3,300	100.30%	2,600	79.03%
naphthalene (µg/kg)	3,780	2,400	63.49%	2,100	55.56%	2,100	55.56%	1000	26.46%	2,100	55.56%	2,300	60.85%	2,300	60.85%
phenanthrene (µg/kg)	1,570	1400	89.17%	1,100	70.06%	1400	89.17%	380	24.20%	1,400	89.17%	1,600	101.91%	1,200	76.43%
pyrene (µg/kg)	4,940	3900	78.95%	2,700	54.66%	4100	83.00%	1400	28.34%	3,600	72.87%	5,500	111.34%	3,500	70.85%
antimony (mg/kg)	65	0.0		58.3	90.11%	12.2	18.86%	19.4	29.98%	24	37.09%	24.2	37.40%	27.7	42.81%
arsenic (mg/kg)	23.2	21	90.52%	23.8	102.59%	21.7	93.53%	21.1	90.95%	20.8	89.66%	21.8	93.97%	24.2	104.31%
barium (mg/kg)	385	330	85.71%	351	91.17%	331	85.97%	346	89.87%	255	66.23%	413	107.27%	336	87.27%
beryllium (mg/kg)	18.20	15	82.42%	17.3	95.05%	16.6	91.21%	16.8	92.31%	11.9	65.38%	19.0	104.40%	18.1	99.45%
cadmium (mg/kg)	19.4	16	82.47%	19.4	100.00%	16.7	86.08%	17.6	90.72%	5.8	29.90%	23.3	120.10%	18.4	94.85%
chromium (mg/kg)	191	160	83.77%	190	99.48%	169	88.48%	178	93.19%	190	99.48%	181	94.76%	197	103.14%
lead (mg/kg)	511	410	80.23%	494	96.67%	426	83.37%	448	87.67%	391	76.52%	519	101.57%	480	93.93%
mercury (mg/kg)	25.0	17.0	68.00%	15.7	62.80%	24.7	98.80%	21.8	87.20%	18.4	73.60%	27.5	110.00%	25.9	103.60%
nickel (mg/kg)	222	170	76.58%	206	92.79%	186	83.78%	198	89.19%	66.8	30.09%	272	122.52%	219	98.65%
silver (mg/kg)	391	130	33.25%	164	41.94%	326	83.38%	339	86.70%	208	53.20%	333	85.17%	361	92.33%

ROUND 2. Summary of Laboratory Results and Recoveries

· · · ·	5	Lab A		Lab B		Lal	b C	La	b D	La	b E	Lab F		La	ab G
Compound/Analyte	Historic	Reporte	Recover	Reporte	Recover	Reporte	Recover	Reporte	Recover	Reporte	Recover	Reporte	Recover	Reporte	Recovery
(reporting units) ⁴	al	d Value	У	d Value	У	d Value	У	d Value	У	d Value	У	d Value	У	d Value	
	Average														
benzene (µg/kg)	152	100	65.79%	84	55.26%	46	30.26%	110	72.37%	120	78.95%	76	50.00%	88	57.89%
chlorobenzene	45	38	83.70%	31	68.28%	24	52.86%	36	79.30%	37	81.50%	28	61.67%	32	70.48%
(µg/kg)															
1,2-dichloroethane	80	68	85.53%	51	64.15%	34	42.77%	68	85.53%	74	93.08%	51	64.15%	54	67.92%
(µg/kg)															
ethylbenzene (µg/kg)	112	87	77.68%	67	59.82%	44	39.29%	86	76.79%	85	75.89%	68	60.71%	70	62.50%
tetrachloroethene	63	42	66.88%	33	52.55%	16	25.48%	30	47.77%	37	58.92%	21	33.44%	33	52.55%
(µg/kg)															
toluene (µg/kg)	90	69	76.41%	58	64.23%	37	40.97%	72	79.73%	72	79.73%	57	63.12%	57	63.12%
1,1,2-trichloroethane	55	52	94.89%	41	74.82%	32	58.39%	51	93.07%	46	83.94%	38	69.34%	38	69.34%
(µg/kg)	4.07												10 000/	=0	
trichloroethene	127	88	69.29%	69	54.33%	33	25.98%	83	65.35%	90	70.87%	61	48.03%	73	57.48%
(µg/kg)															0 4 4 0 0 4
total xylenes (µg/kg)	342	260	76.02%	200	58.48%	140	40.94%	240	70.18%	250	/3.10%	210	61.40%	210	61.40%
Aroclor 1254 (µg/kg)	150	150	100.00%	130	86.67%	160	106.67%	110	73.33%	130	86.67%	140	93.33%	170	113.33%
benzo(b)fluroanthene	2,780	3600	129.50%	2700	97.12%	3500	125.90%	670	24.10%	2900	104.32%	5,000	179.86%	3100	111.51%
(µg/kg)	4 470	4000	400.040/	4 000	04.000/	4.400	05 0 40/	050	00.040/	4 500	400 0 40/	0.400	4 40 000/	4 400	05.0404
benzo(k)fluoranthene	1,470	1600	108.84%	1,200	81.63%	1400	95.24%	350	23.81%	1,500	102.04%	2,100	142.86%	1,400	95.24%
(µg/kg)	0.470	0000	447 440/	0.000	00.070/	0000	00 4 00/	470	40.000/	0.500	404 040/	0.000	450.050/	0.500	101 010/
benzo(a)pyrene	2,470	2900	117.41%	2,200	89.07%	2300	93.12%	470	19.03%	2,500	101.21%	3,800	153.85%	2,500	101.21%
(µg/kg)	4 0 4 0	0000	405 000/	4 700	00.000/	4700	00.000/	100	00.000/	4700	00.000/	0 700	4 40 7 40/	4 000	07.000/
chrysene (µg/kg)	1,840	2300	125.00%	1,700	92.39%	1700	92.39%	490	26.63%	1700	92.39%	2,700	146.74%	1,800	97.83%
fluorene (µg/kg)	2,240	2800	125.00%	2,300	102.68%	3000	133.93%	740	33.04%	2,800	125.00%	3,300	147.32%	2,600	116.07%
naphthaiene (µg/kg)	2,150	2,400	111.63%	2,100	97.67%	2,100	97.67%	1000	46.51%	2,100	97.67%	2,300	106.98%	2,300	106.98%
pnenantnrene (µg/kg)	1,140	1400	122.81%	1,100	96.49%	1400	122.81%	380	33.33%	1,400	122.81%	1,600	140.35%	1,200	105.26%
pyrene (µg/kg)	3,550	3900	109.86%	2,700	70.00%	4100	115.49%	1400	39.44%	3,600	101.41%	5,500	154.93%	3,500	98.59%
antimony (mg/kg)	21	0.0		58.3	276.30%	12.2	57.82%	19.4	91.94%	24	113.74%	24.2	114.69%	27.7	131.28%
arsenic (mg/kg)	19.3	21	108.81%	23.8	123.32%	21.7	112.44%	21.1	109.33%	20.8	107.77%	21.8	112.95%	24.2	125.39%
barium (mg/kg)	350	330	94.29%	351	100.29%	331	94.57%	346	98.86%	255	72.86%	413	118.00%	336	96.00%
beryllium (mg/kg)	15.00	15	100.00%	17.3	115.33%	16.6	110.67%	16.8	112.00%	11.9	79.33%	19.0	126.67%	18.1	120.67%
cadmium (mg/kg)	16.5	16	96.97%	19.4	117.58%	16.7	101.21%	17.6	106.67%	5.8	35.15%	23.3	141.21%	18.4	111.52%
chromium (mg/kg)	180	160	88.89%	190	105.56%	169	93.89%	178	98.89%	190	105.56%	181	100.56%	197	109.44%
lead (mg/kg)	451	410	90.91%	494	109.53%	426	94.46%	448	99.33%	391	86.70%	519	115.08%	480	106.43%
mercury (mg/kg)	19.2	17.0	88.54%	15.7	81.77%	24.7	128.65%	21.8	113.54%	18.4	95.83%	27.5	143.23%	25.9	134.90%
nickel (mg/kg)	190	170	89.47%	206	108.42%	186	97.89%	198	104.21%	66.8	35.16%	272	143.16%	219	115.26%
silver (mg/kg)	322	130	40.37%	164	50.93%	326	101.24%	339	105.28%	208	64.60%	333	103.42%	361	112.11%

ROUND 2 (Cont.) Summary of Laboratory Results and Recoveries

· · · ·	,	La	Lab A		Lab B		o C	La	b D	La	b E	Lab F		Lab G	
Compound/Analyte	Referee	Reporte	Recover	Reporte	Recovery										
(reporting units) ⁴	Mean	d Value	у	d Value	-										
benzene (µg/kg)	118	100	84.75%	84	71.19%	46	38.98%	110	93.22%	120	101.69%	76	64.41%	88	74.58%
chlorobenzene	44	38	85.78%	31	69.98%	24	54.18%	36	81.26%	37	83.52%	28	63.21%	32	72.23%
(µg/kg)															
1,2-dichloroethane	80	68	85.53%	51	64.15%	34	42.77%	68	85.53%	74	93.08%	51	64.15%	54	67.92%
(µg/kg)															
ethylbenzene (µg/kg)	97	87	89.69%	67	69.07%	44	45.36%	86	88.66%	85	87.63%	68	70.10%	70	72.16%
tetrachloroethene	45	42	93.75%	33	73.66%	16	35.71%	30	66.96%	37	82.59%	21	46.88%	33	73.66%
(µg/kg)															
toluene (µg/kg)	83	69	82.83%	58	69.63%	37	44.42%	72	86.43%	72	86.43%	57	68.43%	57	68.43%
1,1,2-trichloroethane	54	52	96.65%	41	76.21%	32	59.48%	51	94.80%	46	85.50%	38	70.63%	38	70.63%
(µg/kg)															
trichloroethene	92	88	95.65%	69	75.00%	33	35.87%	83	90.22%	90	97.83%	61	66.30%	73	79.35%
(µg/kg)															
total xylenes (µg/kg)	295	260	88.14%	200	67.80%	140	47.46%	240	81.36%	250	84.75%	210	71.19%	210	71.19%
Aroclor 1254 (µg/kg)	183	150	81.97%	130	71.04%	160	87.43%	110	60.11%	130	71.04%	140	76.50%	170	92.90%
benzo(b)fluroanthene	2,880	3600	125.00%	2700	93.75%	3500	121.53%	670	23.26%	2900	100.69%	5,000	173.61%	3100	107.64%
(µg/kg)															
benzo(k)fluoranthene	1,200	1600	133.33%	1,200	100.00%	1400	116.67%	350	29.17%	1,500	125.00%	2,100	175.00%	1,400	116.67%
(µg/kg)															
benzo(a)pyrene	2,220	2900	130.63%	2,200	99.10%	2300	103.60%	470	21.17%	2,500	112.61%	3,800	171.17%	2,500	112.61%
_(µg/kg)															
chrysene (µg/kg)	1,780	2300	129.21%	1,700	95.51%	1700	95.51%	490	27.53%	1700	95.51%	2,700	151.69%	1,800	101.12%
fluorene (µg/kg)	2,700	2800	103.70%	2,300	85.19%	3000	111.11%	740	27.41%	2,800	103.70%	3,300	122.22%	2,600	96.30%
naphthalene (µg/kg)	2,400	2,400	100.00%	2,100	87.50%	2,100	87.50%	1000	41.67%	2,100	87.50%	2,300	95.83%	2,300	95.83%
phenanthrene (µg/kg)	1,240	1400	112.90%	1,100	88.71%	1400	112.90%	380	30.65%	1,400	112.90%	1,600	129.03%	1,200	96.77%
pyrene (µg/kg)	3,760	3900	103.72%	2,700	71.81%	4100	109.04%	1400	37.23%	3,600	95.74%	5,500	146.28%	3,500	93.09%
antimony (mg/kg)	25	0.0		58.3	236.99%	12.2	49.59%	19.4	78.86%	24	97.56%	24.2	98.37%	27.7	112.60%
arsenic (mg/kg)	21.8	21	96.33%	23.8	109.17%	21.7	99.54%	21.1	96.79%	20.8	95.41%	21.8	100.00%	24.2	111.01%
barium (mg/kg)	344	330	95.93%	351	102.03%	331	96.22%	346	100.58%	255	74.13%	413	120.06%	336	97.67%
beryllium (mg/kg)	15.80	15	94.94%	17.3	109.49%	16.6	105.06%	16.8	106.33%	11.9	75.32%	19.0	120.25%	18.1	114.56%
cadmium (mg/kg)	17.4	16	91.95%	19.4	111.49%	16.7	95.98%	17.6	101.15%	5.8	33.33%	23.3	133.91%	18.4	105.75%
chromium (mg/kg)	170	160	94.12%	190	111.76%	169	99.41%	178	104.71%	190	111.76%	181	106.47%	197	115.88%
lead (mg/kg)	424	410	96.70%	494	116.51%	426	100.47%	448	105.66%	391	92.22%	519	122.41%	480	113.21%
mercury (mg/kg)	23.8	17.0	71.43%	15.7	65.97%	24.7	103.78%	21.8	91.60%	18.4	77.31%	27.5	115.55%	25.9	108.82%
nickel (mg/kg)	193	170	88.08%	206	106.74%	186	96.37%	198	102.59%	66.8	34.61%	272	140.93%	219	113.47%
silver (mg/kg)	290	130	44.83%	164	56.55%	326	112.41%	339	116.90%	208	71.72%	333	114.83%	361	124.48%

ROUND 2 (Cont.) Summary of Laboratory Results and Recoveries

In the first PE study, some general observations can be made. Lower recoveries were observed for the volatile fraction for laboratory C, D, and G. In addition, the project laboratories had higher recoveries in the volatiles fraction than the referee laboratories. Furthermore, the recoveries of the PAH fraction were somewhat on the low side across all laboratories, with laboratory D exhibiting very low PAH recoveries (<10%). In addition, laboratory A exhibited a low recovery for the PCB fraction. Finally, the recoveries for antimony were observed to be low for both the project laboratories and the referee laboratories.

At the conclusion of the first PE study, sanitized versions of the PE study results were provided to the project laboratories as a mechanism for feedback. The project laboratories were requested to investigate the origin of the problem areas that were identified in the study and take appropriate corrective action to identify and correct the problem. In the second PE study, some general observations can be made. Lower recoveries were observed for the volatile fraction for laboratory C, G, B, and F. The recoveries of the PAH fraction were greatly improved from the previous round, with exception of laboratory D. Laboratory D still exhibited very low recoveries for the PAH fraction. In addition, the recoveries of the PCB fraction were within acceptance limits (as previously defined) for all project laboratories. Furthermore, the recoveries for antimony were observed to be low for both the project laboratories and the referee laboratories.

DISCUSSION

There are several reasons why a PE result could be outside the defined acceptance limits. First, there could be a laboratory performance issue. This is usually observed when one laboratory performs very differently than all of the other project laboratories for a given fraction or analyte. This was observed to be the case for laboratory D for the PAH fraction. Second, there could be a method limitation for analyzing a sample for a given analyte. This was observed to be the case for analyte. This was observed to be the case for analyte. This was observed to be the case for analyte. This was observed to be the case for antimony where both the project laboratories and the referee laboratories exhibited low recoveries for both rounds of PE samples. Furthermore, there could be a PE vendor preparation issue. This is usually observed when all laboratories exhibit recoveries that are not within the defined acceptance range for most of the analytes in a fraction. This was not observed to be the case for any of the PE samples issued to the project laboratories.

LESSONS LEARNED/CONCLUSIONS

There were some inherent issues regarding the addition of water to the soil PE samples. Typically, dried, pulverized sands are utilized for the solid matrix PE samples. Laboratories that perform well on the analysis of dried solid PE samples do not necessarily perform well on the analysis of the multi-phasic PE samples (the latter being samples that typically are submitted for analysis during environmental investigations), particularly for the PAH fraction. Laboratories that utilized a single-solvent extraction for the preparation of the pre-moistened PAH soil PE samples exhibited low recoveries. Laboratories that utilized a 1:1 mixture of methylene chloride/acetone for the preparation of the pre-moistened PAH soil PE samples exhibited recoveries within the project-defined acceptance limits. Another lesson learned is that often times laboratories pay close attention to the instrumentation and data review but may not carefully evaluate the chemistry inherently embedded in the prescribed method. As such, laboratory results can exceed the defined acceptance limits. For instance, between the first PE round and the second PE round, laboratory A identified that their volumetric glassware had not been calibrated in the PCB fraction was outside the tolerance specifications.

Another observation is that the percent moisture that is added to each fraction of the PE sample should be as consistent as possible. Often the laboratory will analyze an aliquot of sample from one of the designated analytical fractions for percent moisture and cross-apply that one determination to all fractions from dry-weight calculations. If the percent moisture is different for each fraction in the PE sample, the laboratory may unknowingly cross-apply an incorrect percent moisture to the other fractions. Similarly, it was observed that the addition of water to the volatile fraction of the soil PE sample resulted in a matrix that was not homogeneous. To overcome this problem that was identified through the course of the PE studies, it was determined that a special coring tool was required to properly subsample the volatile fraction of the PE sample to obtain acceptable (as previously defined) PE results.

REFERENCES

- 1. Dupes, L.J., and G.R. Rose. 1995. "Conducting a Performance Evaluation Study It's Not Just Analytical Results." Eleventh Annual *Waste Testing & Quality Assurance Symposium*, Washington, DC.
- Vitale, R.J. and R.L. Forman. 1998. "A Comparison Of Single-Blind Versus Double-Blind Performance Evaluation Sample Results From Commercial Environmental Laboratories." The 75th Annual American Institute of Chemists National Meeting. Philadelphia, PA.