Entries for September 1-15, 2025

Market/Commercialization Information

STANDARD CHLORINE OF DELAWARE-REMEDIATION SERVICES SINGLE AWARD TASK ORDER CONTRACT (SATOC) (SOL) U.S. Army Corps of Engineers (USACE), Engineer Division North Atlantic, Philadelphia District, Philadelphia, PA Contract Opportunities on SAM, Gov W1912B125784015, 2025

This is a total small business set-aside under NAICS code 552910. The USACE Philadelphia District, requires a contractor to provide various Environmental Remediation Action Services at Operable Unit 2 of the Standard Chlorine of Delaware Superfund site. The contractor will be responsible for all remediation work required under the contract, including sampling, analyses, demolition, excavation, backfilling, handling, packaging, remediation using low temperature thermal desorption (LTDT) and, if necessary, transportation and disposal of materials. The upper 2 for freated sendent will be amended with compost or organic-rich topsoil, bio-caugemented GAC, microbes, and other biological amendments to create a biorsective zone that supports vegetation and enhances bioaugementation in the event of continued contaminated groundwater discharge to the wetland. Wetland restoration will include revegetation with native species and long-term monitoring. The contractor will also provide design support, collaborating with the EPA and its design contains to complete the remedial action design. The avard will be a Single Award Task Order Contract with an ordering period of five years. Each task order may include firm-fixed-price and cost-plus-fixed-fee scope items as appropriate. Offers are due by 6:00 PM EDT on October 29, 2025.

LICENSE SITE REMEDIATION PROFESSIONAL SERVICES (COMBINE) U.S. Department of Energy, Princeton Lab - DOE Contractor, Princeton, NJ contract Opportunities on SAM.90v 25-062R, 2025

This is a full and open competition under NAICS code 562910. The Princeton Plasma Physics Laboratory, a Department of Energy Contractor, requires the services of a Licensed Site Remediation Professional. Task 1 involves preparing and submitting various reports, certifications, and administrative documents to NIDEP, including the Bleinnial Remedial Action and Aquifer CEA Certification with the required well search and supporting documentation. It also covers accurate and complete preparation of other regulatory submittals, which may include the Confirmed Disknaper Notification Form, Remedial Investigation Report/Remedial Action Workplan, Quality Assurance Project Plan, Alternative Remediation Standards application, Remedial Action Report, and Unrestricted Use Response Action Outcome, among others. A minimum of ten working days will be provided for PPPL and/or DDE review and comment on scheduled submittals. The cost of this scope assumes one site visit, for which a Joh Bazard Analysis will be prepared and a pre-job brief conducted prior to the start of work, as needed. Task 2 includes investigation and remediation of soil impacts from spills and legacy impacts. Work is most preparation of the recommendations for supplemental preparations of soil propriets and support of the preparation of the recommendations for supplemental cleanup, if necessary; and any LSRP-required results with recommendations for supplemental cleanup, if necessary; and supplemental propriets of the effectiveness of remediation done by PPPL in response to spills or legacy contamination. The award will be a five-year Basic Ordering Agreement. Interested parties must participate in the mandatory pre-proposal zoom conference. Ordering Agreement. Interested parties must participate in the mandatory pre-proposal zoom conference. Ordering Agreement. Interested parties must participate in the mandatory pre-proposal zoom conference. Ordering Agreement.

ARCHITECT-ENGINEER SERVICES FOR COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN VII) FOR NAVAL FACILITIES ENGINEERING SYSTEMS COMMAND PACIFIC (PRESOL) Department of the Navy, Naval Facilities Engineering Systems Pacific Command, Joint Base Pearl Harbor-Hickan, NAVY (CLEAN VIII) FOR NAVAL FACILITIES ENGINEERING SYSTEMS COMMAND PACIFIC (PRESOL) Department of the Navy, Naval Facilities Engineering Systems Pacific Command, Joint Base Pearl Harbor-Hickan, NAVY (CLEAN VIII) FOR NAVAL FACILITIES ENGINEERING SYSTEMS COMMAND PACIFIC (PRESOL) Department of the Navy, Naval Facilities Engineering Systems Pacific Command, Joint Base Pearl Harbor-Hickan, NAVY (CLEAN VIII) FOR NAVAL FACILITIES ENGINEERING SYSTEMS COMMAND PACIFIC (PRESOL) Department of the Navy, Naval Facilities Engineering Systems Pacific Command, Joint Base Pearl Harbor-Hickan, NAVY (CLEAN VIII) FOR NAVAL FACILITIES ENGINEERING SYSTEMS COMMAND PACIFIC (PRESOL) Department of the Navy, Naval Facilities Engineering Systems Pacific Command, Joint Base Pearl Harbor-Hickan, NAVY (CLEAN VIII) FOR NAVAL FACILITIES ENGINEERING SYSTEMS COMMAND PACIFIC (PRESOL) DEPARTMENT PACIFIC P

This is an invitation for qualified firms interested in this future procurement under NAICS code 541330 to submit Standard Form 330. This future procurement will establish a Comprehensive Long-Term Environmental Action, Navy contract to provide environmental technical and engineering services for NAVFAC Pacific, with a primary focus on cleanup and restoration of contaminated sites under CERCLA. Key activities include evaluating site conditions, conducting field investigations, sampling and an analyzing environmental media, validating data, and performing risk assessments. The contractor will also support remedial planning and design, oversee cleanup construction, and prepare reports such as Preliminary Assessment/Site Inspection, Remedial Investigation/Feasibility, Study, Remedial Design, and Remedial Action Completion Report. Additional work may involve addressing emerging contaminants, investigating munitions and estips, concern, and assessing sites with radioactive materials, as well as supporting compliance with Federal and DDD environmental and safety regulations. Work will occur on military property within the NAVFAC Pacific area of responsibility, often in locations with complex site conditions such as terrestrial, subsurface, marine, and coastal environments, and may involve multiple media of concern including soil, groundwater, sediment, surface water, and air. Access to these sites is extricted to U.S. Citzens or qualified personnel. Standard form 330s are due by 8:00 PM Fio October 30, 2025 <a href="https://doi.org/10.1001/Journal.1001/Journ

Cleanup News

INCREASING DENSITY AND VISCOSITY OF LIGHT NON-AQUEOUS PHASE LIQUIDS ARE INDICATORS OF NATURAL SOURCE ZONE DEPLETION Smith, J.W.N., E. Hinojosa, and A.F.M. Hill. Quarterly Journal of Engineering Geology and Hydrogeology 58(1):qjegh2024-104(2025)

This paper presents data on LNAPL density and viscosity and shows changes that result from natural source zone depletion (NSZD) processes. Increasing trends in LNAPL density and viscosity were observed, providing a qualitative line of evidence for NSZD. When LNAPL density and viscosity were combined with contemporaneous LNAPL themstry analysis it was possible to correlate changes in the physical properties to depletion of alkanes from the LNAPL in a manner that would inform a quantitative NSZD assessment. In addition, INAPL density and viscosity measurements are relatively inexpensive and reproducible. https://doi.org/10.1016/j.naple.2012.41.04

FULL-SCALE APPLICATION OF IN SITU BIOREMEDIATION WITH HARDWOOD MULCH BIOBORINGS AS A SUSTAINABLE, NATURE-BASED APPROACH FOR REDUCTIVE DECHLORINATION Masut, E., L. Ferloli, K. Morris, A. Leginani, and C. Righetto. Aquac

Full-scale in situ bioremediation involved applying hardwood mulch as an electron donor for enhanced reductive dechlorination at a chlorinated ethenes-contaminated site in northern Italy. After operating a P&T system near the downgradient site boundary as hydraulic containment, alternative in situ bioremediation options were assessed to treat both the contamination source and mitigate downgradient interaction of the plume. A bench-scale study and a field pilot test were conducted to provide proof of concept that the application of hardwood mulch with a "bloboding configuration in the subsoil, together with a commercial bloading-inculture, could support the complete anaerobic reductive dichlorination conducted to good and implemented. Which involved the installation of additional mulch bloborings, grouped into transects aligned perpendicular to the main groundwater flow, and the addition of a commercial emulsified vegetable oil-based product in the amendment mixture in the most critical containinated areas. Microbiological and chemical groundwater monitoring was conducted before the start and after the completion of the bloboring in the complete in situ anaerobic reductive dechlorination of TCE to ethene can be achieved in the aquifer with the use of a hybrid in situ bioremediation are strately. Additional mulch object and the configuration. Results confirm that a sustainable and nature-based carbon source amendment can be a valid and for in situ remediation of contamination aspects and plumes of rollorinated alphatic compounds in groundwater, and it may be lower the project life-cycle of conventional and energy-intensive plume management measures such as Ppd systems. See poster from 2024 Batterile Chorinated or contamination and confirmation. A among a supplication of contamination and confirmation and contamination and confirmation. A more contamination and confirmation and confirmation and confirmation and confirmation.

SUSTAINABLE REMEDIATION - STRATEGY, BEST PRACTICES, AND REAL WORLD APPLICATIONS Fleri, M.A. I Sustainable Remediation Forum (SURF) webinar, 1 May, 42 minutes, 2025

This presentation provided a perspective on integrating sustainability principles into remediation projects, focusing on best practices, innovative strategies, and key data collection methods that drive responsible decision-making. It explored how sustainability is applied in real-world scenarios through project case studies, highlighting successful project execution, waste minimization, resource optimization, recycling, and carbon footprint accounting. https://www.youtube.com/watch2v=19mK-Zeq1Xc

TAILORED MULTI-STAGE REMEDIATION TO ADDRESS PFAS CHALLENGES AT A COMMERCIAL AIRPORT Bani, B. I PFAS Forum V, 9-11 April, Orlando, FL, 32 minutes, 2025

An innovative remediation strategy and an adaptable management framework were developed to address PFAS contamination in groundwater and soil under diverse hydrogeological and climatic conditions at a commercial airport in Canada. The project developed a comprehensive PFAS management program encompassing site characterization, source identification, risk assessment was conducted using innovative read-across new approach methods to assess risk of PFAS parameters without regulatory toxicity values. The establishment of site-specific risk-based criteria to guide remediation, reducing reliance on evolving generic regulatory standards. A dynamic and data-driven approach integrated hydrogeological modeling, a visual 3D CSM, and stakeholder engagement to inform decision-making. A multi-stage remediation approach synchrogeological modeling, a visual 3D CSM, and stakeholder engagement to inform decision-making. A multi-stage remediation approach expedited remediat efforts by targeting PFAS mass removal and soil stabilization of the state policy of the properties of the state policy of the properties of the state policy of the state policy of the properties of the state policy of the properties of the state policy of the properties of the properties of the state policy of the properties of the pro

Demonstrations / Feasibility Studies

DESTRUCTION OF PFAS DURING THERMAL REACTIVATION OF GRANULAR ACTIVATED CARBON USED IN POTABLE WATER TREATMENT Mayorberger, F., A., Rodriguez, F., Townsend, R., DiStefano, R., Alward, and J., Matthis,

Several studies have shown that thermal reactivation of GAC can destroy PFAS. The present work addresses remaining knowledge gaps for full-scale potable reactivation facilities. Two separate reactivation trials of PFAS-laden spent GAC were performed at a full-scale potable-classed reactivation facility employing two rotary kink furnaces and an off-gas abatement system. Three main objectives were to (1) determine the PFAS destruction removal efficiency; (2) demonstrate the current production rates and kin operating conditions to remove PFAS below detectable limits on reactivated GAC, and (3) incorporate state-of-the-art capture and EPA analytical methods and products of incomplete combustion or destruction analysis. Each reactivation trial consisted of 3 independent reactivation tasts, for a total of 6 data sets. The 2024 Trial utilized the revised OTM-45 method, and the 2023 Trial utilized the revised OTM-45 method. At the temperatures and operating conditions tested, no targeted PFAS were detected on the reactivation process. All individual compound emissions were found estirated in expensions of the control of the control of the current and proposed state regulatory values. OTM-95 and EPA Method of 001/08270 yielded non-detect results at the sample collection points for each temperature and operating condition evaluated. Results demonstrate and support GAC reactivation as a viable method for the destruction of PFAS, thus breaking the cycle within the environment.

PHYTOREMEDIATION OF TOTAL PETROLEUM HYDROCARBONS-CONTAMINATED SOILS: CASE STUDY OF JERUSALEM ARTICHOKES WITH COST ANALYSIS AND BIOMASS CONVERSION Rubezius, M., Z. Kidikas, C. Kick, and A. Kasiuliene. I Agronomy 15(3):601(2025)

A full-scale phytoremediation experiment was conducted at a former oil storage sits using energy crops like, Jenusalem artichokes (Helianthus tuberosus), where the biomass was later converted into biofuel and other by products using ab-scale kepting promising results included within two years; the intelligible into the products, such intelligible into the products and products, such intelligible into the products and products, such intelligible into the products and products.

Intelligible into the products are products and products are products and products are products and products. The products are products and products are products and products are products and products. The products are products and products are products and products are products and products are products and products. The products are products are products and products are products are products and products are products and products are products are products and products are products and products are products are products and products are products are products and products are products and products are products are products are products and products are products are products and products are products and products are products are products are products are products and products are products are products a

ADAPTATION AND CARBON REDUCTION FOR PETROLEUM CONTAMINATED SOIL REMEDIATION IN RESPONSE TO CLIMATE CHANGE-A CASE STUDY OF PHYTOREMEDIATION COMBINED WITH

BIOCHAR Cheng, P.-C., M.-S. Lin, C.-Y. Huang, S.-F. Cheng, and Y.-C. Lin. Journal of Environmental Management 393:126956(2025)

A field trial was conducted to evaluate the combined effects of biochar amendment (2.5 %) and vetiver planting on total petroleum hydrocarbon (TPH) degradation efficiency and CO₂ e mitigation in both freshly contaminated and weathered soil. Results demonstrated that biochar application enhanced vetiver plant biomass by ~1.6-fold in both soil types. After six months, TPH removal efficiencies reached nearly 90% in biochar-amended soils planted with vetiver. The estimated carbon reduction potential reached approximately 440.7 tons CO₂ per her texter in fershly contaminated soil and 482.4 tons CO₂ per her texter in weathered soil, highlighting the dual benefits of contaminant remediation and climate change

IN SITU JET GROUTING-ASSISTED CHEMICAL OXIDATION FOR REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SITES: AN ENGINEERING PRACTICE SANG, K. X. W. UB, B. L., and C. K. B. JOURNAJ OF Environmental Engineering 151:19(2025)

Prior to in situ jet grouting-assisted chemical oxidation freatment, a comprehensive investigation, including sampling, chemical analysis, and geographical statistical analysis, was conducted to describe the content and spatial distribution characteristics of PAHs at an abandor coking stein in-funan province, of him. Lab and field lests were carried out to determine the optimal proportion of the compound oxidant and the optimal parameters of jet grouting before pilot-scale application to verify the effectiveness of the remediation technology. Results indicated that six PAHs exceeded the filter values, and the spatial distribution showed 'patchy aggregation' characteristics. In addition, the low-ring PAHs first increased and then decreased with depth, with a maximum polluted depth of 8.0 m, while the high-ring PAHs decreased with depth, with a maximum polluted depth of 8.0 m. Low-ring PAHs were the primary contaminant, with leakage of oil by-rocation in the patch of the residue, naphthalenene oil, and accendance oil of the patch of t

Research

REGENERATION OF CONVENTIONAL AND EMERGING PFAS-SELECTIVE ANION EXCHANGE RESINS USED TO TREAT PFAS-CONTAMINATED WATERS

Ellis, A.C., T.H. Boyer, and T.J. Strathmann. Separation and Purification Technology 355(Part B):129789(2025)

The efficacy of various regenerant solution constituents, mixtures, and operational considerations was evaluated to regenerate both 'regenerable' and 'PFAS-selective' anion exchange resins (AERs) loaded during a pilot treatment study of PFAS-contaminated groundwater. Batch screening of regenerant solution constituents found that both resin classes may be effectively regenerated by combining salt brine and organic cosolvent, though high cosolvent fractions are necessary for PFAS-selective AERs. While line enither brine-only regenerant solutions effectively desproded PFAS, regeneration efficacy with brine-picosolvent mixtures varied with salt type and cosolvent composition. Chloride salts outperformed sulfate and bicarbonate salts; cosolvent efficacy depended on the volume fraction and type used, and highly non-polar solutions led to optimal PFAS description. Continuous-flow regeneration experiments showed near-complete PFAS description from regenerable AERs using 10 bed volumes (BVs) of 70% methanolic brine solutions, while PFAS -selective resins required more BVs (30) of brines with higher methanol content (90%) or a more hydrophobic cosolvent (n-propanol). Increasing regenerant empty-bed contact time had minimal effect on PFAS description. Over 90% methanol recovery from the resulting waste regenerant mixtures was accomplished with negligible PFAS contamination using distillation, leaving a minimal volume of a PFAS-concentrated still bottoms waste that may be first brine and any set of the properties of the properti

BIOREMEDIATION OF TRICHLOROETHYLENE-CONTAMINATED GROUNDWATER USING GREEN CARBON-RELEASING SUBSTRATE WITH PH CONTROL CAPABILITY Lee, H.-C., S.-C. Chen, Y.-T. Sheu, C.-L. Yao, K.-H. Lo, and C.-M. Kao. Environmental Pollution 348: 123766(2025)

A green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was created to facilitate the bioremediation of TCE-contaminated groundwater. The GLS was prepared by homogenizing a mixture of soybean oil, surfactants (Simple Green** and soyal ecitifath), and m-RHA to ensure a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA. Analyses demonstrate that m-RHA were uniform sphere shaped granules with diamenters in the micro-scale ranges. Results show that +83% of TCE could be removed (initial TCE concentration = 75 mg/L) with GLS supplement after 6d days, Compared to other concentrations are supplemented to the supplementary of the supplementary of

IMMOBILIZING S-NZVI@LDO FOR SIMULTANEOUS REMOVAL OF PFOA AND TCE CO-CONTAMINANTS FROM GROUNDWATER Liu, X., Q., Wang, Z. Zhang, L. Jia, Z. Shen, T. Long, G.Z. Chen, J. He, and X. Song. Lournal of Hazardous Materials 495:138949(2025)

A study applied sulfidated nano zero-valent iron supported on calcined layered double oxides (S-nZVI@LDO) to simultaneously remove TCE and PFOA. A 2 g/L S-nZVI@LDO dose simultaneously removed 73.3% TCE and 37.8% PFOA in pure water, with 49.5% TCE degraded to less chlorinated products and 23.8% adsorbed or unquantified transformation of C₂C-6 hydrocarbons. Comparative experiments using individual and co-occurring TCE and PFOA eveslet that co-existing non-composite S-nZVI and LDO. Based on the characterization of S-nZVI@LDO. TCE removal involved reductive dechlorination and sorption is hydrophobic interactions, while PFOA removal was primarily driven by electroatic interactions and hydrogen bonding. In real groundwater, S-nZVI@LDO achieved \$8.2% TCE and 33.7% PFOA removal. S-nZVI@LDO also simultaneously removed nine different PFAS from a 12-PFAS mixture and demonstrated greater effectiveness for long-chain PFAS and their alternatives owing to their hydrophobic nature.

EXPOSURE OF FREE-RANGING WHITE-TAILED DEER (ODOCOILEUS VIRGINIANUS) TO PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) AT PFAS-IMPACTED SITES IN MINNESOTA LASPARY K. D. P. Scher, S. Streets, M. Carstensen, B. Keller, and J. Kelly.

PFAS (series were assessed in wild white-tailed deer (Odcolieus virginizarus), an important food source in Minnesota. Forty PFAS were accessed in liver samples (n = 1.15) collected from deer harvested by hunters named shows the series seventeen PFAS compounds were detected at least one in liver samples, with PFAS town of India (New York) and their maximum concentrations) were PFAS (96.0 mg/g), 6:2 FTS (48.4 mg/g), PFBAS (91.4 mg/g), PFBAS (91.4 mg/g), PFBAS (91.5 mg/g), PFBAS (91.5

OVERCOMING ANALYTICAL CHALLENGES OF OTHER TEST METHOD 50: ANALYSIS OF VOLATILE FLUORINATED COMPOUNDS IN PASSIVATED CANISTERS FROM STATIONARY SOURCE EMISSIONS Wallace, MA.G., S.R. Jackson, W.T. Preston, I. Miles, H. Calider, S. Davies, and M. Cumbes

EPA developed Other Test Method (OTM)-50, a canister sampling and thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) analysis method to measure volatile fluorinated compounds (VFCs) from stationary source emissions. This study describes experiments that were conducted to develop optimized analytical methods for samples that may contain high humidity and carbon dioxide (CO₂) levels. A prototype preconcentrator with a focusing trap capable trifluoromethane. Therefore, the optimized method utilized a low trap temperature of -30°C to avoid trapping high levels of CO₂ bat may be present in stationary source samples. Increasing the dry purger time to nine minutes during preconcentration eliminated enough CO₂ to recover target compounds within ± 30% of the standard value, as required by OTM-50. The method was used to analyze samples collected in the absence and presence of high CO₂ levels to demonstrate the method even under challenging conditions.

General News

IN SITU CHEMICAL OXIDATION (ISCO) IMPACT ON PFAS FATE AND TRANSPORT EPA Superfund Program - RPM Technical Bulletin, 25 pp, August 2025

EPA'S Superfund Program - K-PM i ecnnical Bulletin, 25 pp, August 2022

EPA'S Superfund Program developed this textonical Bulletin, by guide RPMs in evaluating in situ chemical oxidation (ISCO) for PFAS-contaminated sites. The bulletin highlights that ISCO can convert PFAS precursors into more recalcitrant PFAS, complicating remediation efforts. Different oxidants used in ISCO, such as persuifate and hydrogen personale, have varying effects on PFAS and their precursors, depending on environmental conditions like pH levels and organic carbon content. While ISCO can degrade some PFAS precursors (such as fluorosichoids and ethers), degraded PFAS precursors often transform into terminal PFAS (such as PFOA, PFOS) that are more resistant to remediation. It may also enhance PFAS mobility by altering aquifer chemistry. To address these challenges, the bulletin recommends bench-scale studies and thorough groundwater monitoring to assess ISCO's potential impact on PFAS fate and transport. It suggests using the Total Oxificable Precursor (TOP) assay, nontargeted analysis (NTA) and organofluorine analysis (AOP/EOP) to identify PFAS precursors that might lead to increased PFAS contamination. The bulletin underscores the importance of site-specific evaluations to determine the feasibility and risks of deploying ISCO and provides examples for how to evaluate a PFAS-contaminated site for continued use of ISCO.

https://www.nan.nu/scutsmifics/documents/107S-49fABO-scient-terminal-rangent-off-fas-fas-and-transport-off-

ENHANCED MONITORED NATURAL RECOVERY (EMNR) FOR SEDIMENT SITES NAVFAC Fact Sheet, 5 pp. 2025

INNOVATIVE SOLIDIFICATION AND STABILIZATION TECHNIQUES USING INDUSTRIAL BY-PRODUCTS FOR SOIL REMEDIATION Petrillo, A., F. Fraternali, F. Colangelo, and I. Farina. Applied sciences 15(7):4002(2025)

A study focused on the theoretical definition and optimization of a green material mix to be used in the solidification process of contaminated industrial soil to ensure treatment effectiveness. The mix design was developed through a literature analysis, representing a preliminary theoretical study. The paper explores the application of the solidification and stabilization process using various additives, including Portland cement, fly ash, ground granulated blast furnace slag, and other industrial washe materials, to create an innovative mix design to treat contaminated soil. The main objective to reduce the permeability and solibility of contaminants while simultaneously improving the mechanical properties of the treated materials. The properties of the studied soils are described along with those of the green materials used, providing a comprehensive overview of the optimization of the resulting mixtures. https://www.mdpi.com/2076-3417/15/7/4002

CHAPTER ONE -ADVANCES IN METAL(LOID) IN SITU SOIL REMEDIATION AND POTENTIAL INFLUENCES OF CHANGING ENVIRONMENTAL CONDITIONS SOWERS T. W. FISTERI 4. Be Letts and S. Rodes

Sowers, T., M. Fischel, H. Peel, J. Fischel Advances in Agronomy 194:1-53(2025)

This chapter discusses a subset of in situ remediation methods that represent promising options for treating high-priority metal(loid) contaminants, specifically lead, mercury, arsenic, chromium, and uranium. The chapter evaluates unique chemistries associated with cation, oxyanion, and radionuclide contaminants. Mobility of these elements when subjected to environmental changes from sea level rise, flooding, and wildfires are also explored. There is great uncertainty regarding how remediated contaminants will respond when exposed to changing soil conditions promoted by shifts in the surrounding environment. Further exploration is essential to understanding metal(loid) contaminant biogeochemical cycling and estimating the reduction in exposure post-remediation.

PREDICTIVE MODELING OF PFAS BEHAVIOR AND DEGRADATION IN NOVEL TREATMENT SCENARIOS: A REVIEW Olawade, D.B., J.O. Jimade, O. Fapohiunda, A.O. Ige, D.O. Olajoyetan, and O.Z. Wada. Process Safety and Environmental Protection 195:10869 (2025)

This narrative review explores advancements in predictive models for PFAS remediation, focusing on methods that incorporate PFAS structural characteristics, environmental factors, and treatment type. Three main modeling approaches discussed are empirical, mechanistic, and machine learning models, each with unique strengths and limitations depending on data availability and treatment conditions. The review also addresses recent developments in advanced treatment systems, such as advanced toxicity, and advaption, as well as the role of machine learning in optimizing treatment predictions. Key challenges, including data limitations, transformation product toxicity, and the production of the

The Technology Innovation News Survey welcomes your comments and suggestions, as well as information about errors for correction. Please contact Michael Adam of the U.S. EPA Office of Superfund and Emergency Management at adam michael@ana.gou or (703) 399-4268 with any comments, suggestions, or corrections.

Mention of non-EPA documents, presentations, or papers does not constitute a U.S. EPA endorsement of their contents, only an acknowledgment that they exist and may be relevant to the Technology Innovation News Survey audience.