Office of Solid Waste And Emergency Response Washington, DC 20460 EPA/540/2-91/001 Number 3 April 1992 Prepublication Copy # Innovative Treatment Technologies: Semi-Annual Status Report (Third Edition) EPA/540/2-91/001 Number 3 April 1992 ### INNOVATIVE TREATMENT TECHNOLOGIES: SEMI-ANNUAL STATUS REPORT (Third Edition) U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 #### NOTICE This material has been funded wholly or in part by the United States Environmental Protection Agency under contract numbers 68-W0-0034 and 68-W0-047. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. #### **FOREWORD** In April 1990 the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response (OSWER) established the Technology Innovation Office (TIO) to promote the use of innovative treatment technologies for contaminated site cleanup. TIO's mission is to increase the application of innovative treatment technology by government and industry to contaminated waste sites, soils, and ground water. One of TIO's goals is the removal of regulatory and institutional barriers to the development and use of innovative technologies. Another is the provision of richer technology and market information to target audiences of federal agencies, States, consulting engineering firms, responsible parties, technology developers, technology vendors, and the investment community. This report documents the selection and use of innovative treatment in the Superfund program. It will allow better communication between experienced technology users and those who are considering innovative technologies to clean up contaminated sites. The information will also enable technology vendors to evaluate the market for innovative technologies in Superfund for the next several years. As more information becomes available, we plan to expand this document to include cleanup programs other than Superfund. The use of innovative treatment in Superfund and other EPA waste programs is addressed by a directive, "Furthering the Use of Innovative Treatment Technologies in OSWER Programs" (OSWER Directive 9380.0-17, June 10, 1991). This directive sets forth seven new initiatives to remove impediments from and create incentives to the use of innovative treatment for Superfund, corrective action under the Resource Conservation and Recovery Act (RCRA), and underground storage tank cleanups. It is hoped that efforts such as the directive and this document will increase the reliance on new, less costly, or more effective technologies to address the problems associated with Superfund, hazardous waste, and petroleum contamination. Walter W. Kovalick, Jr., Ph.D. Director, Technology Innovation Office #### **ABSTRACT** This twice-yearly report documents and analyzes the selection and use of innovative treatment technologies in the Superfund Program. It will allow better communication between experienced technology users and those who are considering innovative technologies to clean up contaminated sites. In addition, the information will enable technology vendors to evaluate the market for innovative technologies in Superfund for the next several years and will be used by EPA's Technology Innovation Office to track progress in the application of innovative treatment. Alternative treatment technologies are "alternatives" to land disposal. Innovative treatment technologies are alternative treatment technologies for which use at Superfund-type sites is inhibited by lack of data on cost and performance. This report documents the use of the following innovative treatment technologies to treat ground water (in situ), soils, sediments, sludge, and solid-matrix wastes: - Chemical treatment - Dechlorination - Ex situ bioremediation - In situ bioremediation - · In situ flushing - In situ vitrification - Soil vapor extraction - · Soil washing - Solvent extraction - Thermal desorption - Other technologies (Air sparging, contained recovery of oily wastes) The document includes information on 210 applications of innovative treatment technologies for remedial actions and 18 applications for emergency response actions. It contains several summary lists of the Superfund sites for which innovative treatment technologies have been selected or used. Table 1 lists the sites by EPA region. Table 2 lists the sites by type of innovative technology and gives the status of application of the innovative treatment technology. The principal part of the document is Table 3, which contains detailed, site-specific information for sites where innovative treatment has been selected. The information for Table 3 was collected through analyses of Records of Decision, review of OSWER tracking systems and interviews with EPA regional staff. The information in that table is analyzed and summarized in narrative and figures in the overview of the document. Table 4, new in this edition of this report, summarizes performance and operating data on the 21 remedial and removal innovative projects that have been completed. To obtain a copy of this report, call ORD Publications at (513) 569-7562 and ask for it by number, EPA 540/2-91/001. To receive future editions of this status report, fill out the back sheet and mail it to the address indicated. Your name will be added to the mailing list of those receiving the document. #### CONTENTS Notice ii Foreword iii Abstract iv List of Tables vi List of Figures vii List of Abbreviations viii Acknowledgements ix Overview Introduction What are Alternative and Innovative Treatment Technologies? Sources of Information for this Report Increasing Use of Alternative and Innovative Treatment Technologies Definitions and Summary Statistics for Specific Innovative Treatment Technologies 6 Status of Innovative Technology Implementation 11 Treatment Trains 13 Volume Analysis 14 Summary of Updates to Last Report 15 Contents of this Report 16 #### LIST OF TABLES | | Page | |--|--| | Table 1 - EPA Regional Summary for Innovative Treatment Technologies | 17 | | Table 2 - Project Status Summary by Innovative Treatment Technology | 21 | | Table 3 - Detailed Site Information by Treatment Technology Bioremediation (Ex situ) Bioremediation (In situ) Chemical Treatment Dechlorination In situ Flushing In situ Vitrification Soil Vapor Extraction Soil Washing Solvent Extraction Thermal Desorption Other Technologies | 25
28
32
35
36
38
41
42
54
57
58
62 | | Table 4 - Data on Operations and Performance for Completed Projects | 63 | | Appendix | | | A. Remedial Sites Using Established Treatment Technologies | A-1 | | B. Remedial/Removal Sites Using Treatment Trains with Innovative Technologies | B-1 | #### LIST OF FIGURES | Number | • | Page | |--------|---|------| | 1 | Remedial Actions: RODs Signed by Fiscal Year | 2 | | 2 | Remedial Actions: Source Control RODs by Fiscal Year | 2 | | 3 | Remedial Actions: Overview of All Source Control RODs Through FY 91 | 3 | | 4 | Remedial Actions: Treatment Versus Disposal RODs for Source Control | 3 | | 5 | Remedial Actions: Summary of Alternative Treatment Technologies Through FY 91 | 4 | | 6 | Remedial Actions: Number of Established Versus Innovative Treatment Technologies | 5 | | 7 | Selection Trends for Four Innovative Treatment Technologies | 5 | | · 8 | Emergency Responses: Summary of Innovative Technologies Through February 1992 | 6 | | 9 | Bioremediation: Target Contaminants Through Fiscal Year 1991 | 7 | | 10 | Dechlorination: Target Contaminants Through Fiscal Year 1991 | 7 | | 11 | In Situ Flushing: Target Contaminants Through Fiscal Year 1991 | 8 | | 12 | In Situ Vitrification: Target Contaminants Through Fiscal Year 1991 | 8 | | 13 | Soil Washing: Target Contaminants Through Fiscal Year 1991 | 8 | | 14 | Solvent Extraction: Target Contaminants Through Fiscal Year 1991 | 8 | | 15 | Thermal Desorption: Target Contaminants Through Fiscal Year 1991 | 9 | | 16 | Soil Vapor Extraction: Target Contaminants Through Fiscal Year 1991 | 9 | | 17 | Innovative Treatment for VOCs. | . 10 | | 18 | Innovative Treatment for Heavy Metals | 10 | | 19 | Innovative Treatment for PAHs | 10 | | 20 | Innovative Treatment for PCBs | 10 | | 21 | Remedial Actions: Project Status of Innovative Treatment Technologies as of February 1992 | 11 | | 22 | Progress in the Remedial Pipeline - August 1991 to February 1992 | 12 | | 23 | Treatment Trains of Innovative Treatment Technologies Selected for Remedial/Removal Sites | 13 | | 24 | Quantities of Soil to be Treated by Innovative Technologies | 14 | #### LIST OF ABBREVIATIONS | AM | Action Memorandum | OU | Operable Unit | |--------|---|-------------|---| | APC | Air Pollution Control | PAHs | Polynuclear aromatic hydrocarbons | | APEG | Alkaline metal hydroxide/polyethylene glycol | PCBs | Polychlorinated biphenyls | | ARCS | Alternative remedial contracts strategy | PCE | Perchloroethylene (tetrachloroethylene) | | ATTIC | Alternative Treatment Technology Information | PCP | Pentachlorophenol | | | Center | PRP | Potentially responsible party | | BCD | Base Catalyzed Dechlorination | RA | Remedial action | | BTEX | Benzene, toluene, ethylbenzene, xylene | RCRA | Resource Conservation and Recovery Act | | BTX | Benzene, toluene, xylene | RD | Remedial design | | су | Cubic yards | RODs | Records of Decision | | DCA |
Dichloroethane | RPM | Remedial project manager | | DCE | Dichloroethylene | RSKERL | Robert S. Kerr Environmental Research Laboratory, | | DEHP | Di (2-ethylhexyl) phthalate | | Ada, OK (U.S. EPA) | | FAA | Federal Aviation Administration | SARA | Superfund Amendment and Reauthorization Act of | | Ft | Feet | | 1986 | | FY | Fiscal year | SVOCs | Semivolatile organic compounds | | gw | Ground water | S/S | Solidification/Stabilization | | KPEG | Potassium hydroxide/polyethylene glycol | TCA | Trichloroethane | | MBOCA | 4,4' Methylene Bis-2-chloroaniline | TCE | Trichloroethylene | | NAPL | Nonaqueous Phase Liquids | TIO | Technology Innovation Office | | NPL | National Priorities List | USACE | U. S. Army Corps of Engineers | | OERR | Office of Emergency and Remedial Response | USDA | U. S. Department of Agriculture | | OSC | On scene coordinator | VOCs | Volatile organic compounds | | OSWER | Office of Solid Waste and Emergency Response | | | | OUTLIN | OTTION OF POLICE IS MOTO MILE PHILE BOILD LEGEBOURD | | | #### **ACKNOWLEDGEMENTS** This document was prepared under the direction of Ms. Linda Fiedler, work assignment manager for the U.S. Environmental Protection Agency's Technology Innovation Office. Collecting and analyzing information on 228 applications of innovative treatment technologies and summary information on RODs required the help of many individuals, including Nancy Dean, Maggie Breville, Jon Bornholm, Jack Burnette and Joe Greenblot of EPA. Special acknowledgement goes to the regional and State staff listed as contacts for individual sites. They provided the detailed information contained and summarized here. Their cooperation and willingness to share their knowledge and expertise on innovative treatment technologies encourages the application of those technologies at other sites. | • | | | | |-------|--|--|--| \$ of | | | | #### OVERVIEW #### Introduction The Technology Innovation Office (TIO) of the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response (OSWER) has prepared this *Innovative Treatment Technologies: Semi-Annual Status Report* to document the use of the innovative treatment technologies to remediate Superfund sites. The report contains site-specific information on Superfund sites (both remedial and emergency response actions) where innovative treatment technologies are being used. Site managers can use this report in evaluating cleanup alternatives. Innovative technology vendors can use it in identifying potential markets. TIO also uses the information to track progress in the application of innovative treatment. The report is updated biannually. This April 1992 issue of the report updates and expands information provided in the January 1991 and September 1991 reports. Additional information includes 70 innovative treatment technologies selected for remedial actions in fiscal year (FY) 1991 Superfund Records of Decision (RODs) and more detailed information on completed projects. (A ROD is the decision document used to specify the way a site, or part of a site, will be remediated.) ### What Are Alternative and Innovative Treatment Technologies? Alternative treatment technologies are "alternatives" to land disposal. The most frequently used alternative technologies are incineration and solidification/stabilization. Innovative treatment technologies are alternative treatment technologies for which lack of data on performance and cost inhibit their use for many Superfund types of applications. In general, a treatment technology is considered innovative if it has had limited full-scale application. Often, it is the application of a technology or process to soils, sediments, sludge, and solid-matrix waste (such as mining slag) that is innovative. Ground-water treatment after the water has been pumped to the surface often resembles traditional water treatment technologies; thus, in general, pump-and-treat or ex situ groundwater remedies are considered established. In situ bioremediation and other methods to treat ground water in situ are considered innovative technologies. This report documents the use of the following innovative treatment technologies to treat soils, sediments, sludge, and solid-matrix waste: - Bioremediation (Ex situ) - Bioremediation (In situ) - · Chemical treatment - Dechlorination - · In situ flushing - In situ vitrification - · Soil vapor extraction - Soil washing - Thermal desorption - Other technologies (air sparging, contained recovery of oily wastes) In addition, the nine sites using in-situ bioremediation for ground water are included with the other in situ bioremediation projects. #### Sources of Information for this Report EPA initially used RODs to compile information on remedial actions, and Pollution Reports, On-Scene Coordinators Reports, and the OSWER Removal Tracking System to compile data on emergency response actions. EPA then verified and updated the draft information by interviews with remedial project managers (RPMs) and on-scene coordinators (OSCs). The data concerning project status do not duplicate data in CERCLIS, EPA's Superfund tracking system. This report provides more detailed information specifically on the portion of the remedy pertaining to an innovative technology. In addition, technologies and sites identified here might differ from information found in the ROD annual reports and the RODs Database. These differences are the result of design changes in the treatment trains used at sites. Such changes might or might not may or may not require official documentation (that is, a ROD amendment or an Explanation of Significant Differences). The information in this report on the selection of containment remedies and established treatment technologies in FY91 is based on a review of RODs by EPA's Office of Emergency and Remedial Response (OERR). ### **Increasing Use of Alternative and Innovative Treatment Technologies** ROD Statistics. Currently, there are 1,236 sites on or proposed for the National Priorities List (NPL). Through FY91, ending September 30, 1991, 947 RODs had been signed. Most RODs for remedial actions address the source of contamination, such as soil, sludge, sediments, solid-type wastes, and nonaqueous phase liquids (NAPL). These RODs are referred to as "source control" RODs. Other RODs address ground water only or specify that no action is necessary. Figure 1 shows the number of source control RODs relative to the total number of RODs for each fiscal year. An analysis of source control RODs allows a comparison of the frequency of selection of treatment versus containment or disposal to remedy site contamination. Source control RODs are classified by the general type of technology selection: (1) RODs specifying some alternative treatment; (2) RODs specifying containment/disposal only; (3) RODs specifying other action (such as land use restrictions, monitoring, or relocation). Figure 2 shows the number of source control RODs that fall under each category. RODs selecting some treatment also may include containment of treatment residuals or of waste from another part of the site. Overall, 62% of source control RODs have selected at least one treatment technology for source control (Figure 3). The Superfund Amendments and Reauthorization Act of 1986 (SARA) required that EPA favor permanent remedies (that is, alternative treatment) over containment or disposal to remediate Superfund sites. In each year following the passage of SARA, more than 70% of the RODs contain provisions for treatment of wastes. The increase is most dramatic in FY88. Fifty percent of RODs in FY87 selected some treatment for source control, whereas 70% of RODs in FY88 selected some treatment (Figure 4). The percentage has grown to 77% in FY 91. <u>Technology Statistics</u>. Another way of illustrating the greater use of treatment is by quantifying the number and kinds of treatment technologies selected and used. The remainder of the information contained in this document focuses on technologies, not RODs. Each ROD specifying treatment may have selected several alternative treatment technologies. Through FY91, 489 treatment technologies have been selected in 418 source control RODs. In addition, EPA has selected in situ bioremediation of ground water for nine sites for a total 498 treatment technologies. The selection of multiple technologies results from the use of treatment trains or from the treatment of different wastes or areas of the site. For the 418 RODs specifying treatment for source control, Figure 5 lists each type of treatment technology selected and how often it has been selected or used for source control. The nine in situ groundwater remedies are included in the totals for in situ bioremediation. Figure 5 illustrates that, through FY91, 42% of the 498 treatment technologies selected were innovative and 58% were conventional. This report contains summary information on the innovative treatment technology projects and a list of sites using established technologies (Appendix A). Information on the established treatment technologies for FY91 is based on the review of RODs by OERR, rather than Regional or State interviews. ## FIGURE 5 REMEDIAL ACTIONS: SUMMARY OF ALTERNATIVE TREATMENT TECHNOLOGIES THROUGH FISCAL YEAR 1991 (Total Number of Technologies = 498) Note Data are derived from 1982 – 1991 Records of Decision (RODs) and anticipated design and construction activities as of February 1992. More than one technology per site may be used. - () Number of times this technology was selected or used. - "Other" established technologies are soil aeration, in situ flaming, and chemical neutralization. "Other" innovative technologies are air sparging and contained recovery of oily wastes. - # Includes nine in situ groundwater treatment remedies. In FY91, for the first time, innovative treatment
technologies accounted for half of the treatment technologies selected. This increase is due, in part, to the large number of soil vapor extraction (SVE) projects selected in FY91, 33 in FY91 compared to 19 in FY90. Figure 6 compares the numbers of established and innovative technologies by fiscal year. Figure 7 shows the selection frequency for the four most frequently selected innovative treatment technologies, including SVE, by fiscal year. Emergency Response Actions. Emergency response actions are conducted in response to an immediate threat caused by a release of hazardous substances. Emergency responses do not require RODs. To date, innovative treatment has been used in relatively few emergency response actions. The innovative technologies addressed in this report have been used 18 times in 15 emergency response actions (Figure 8). In addition, infrared incineration, no longer considered innovative, was first used at two emergency response actions. Many emergency responses involve small quantities of waste or immediate threats requiring a quick action to alleviate the hazard. Often, these types of activities do not lend themselves to on-site treatment approaches. In addition, SARA does not contain the same preference for innovative treatment for removals as it does for remedial actions. As a result, the selection of innovative treatment for removals has remained relatively constant—zero to five selected per year since FY84. EPA would like to increase the use of innovative treatment methods to address emergency response problems. One of the seven initiatives contained in the EPA directive described in the foreword concerns emergency response actions. It is expected that more innovative technology will be used for the larger, and less time-critical emergency responses in the future. ### Definitions and Summary Statistics for Specific Innovative Treatment Technologies The innovative technologies reported in the following tables treat hazardous wastes in very different ways. The following paragraphs and figures define the technologies as they are used in this document and provide summary statistics of the contaminants treated with the technologies. EX SITU BIOREMEDIATION uses microorganisms to degrade organic contaminants on excavated soil, sludge, and solids. The microorganisms break down the contaminants by using them as a food source. The end products are typically CO₂ and H₂O. Ex situ bioremediation includes slurry-phase bioremediation, in which the soils are mixed in water to form a slurry; and solid phase bioremediation where the soils are placed in a tank or building and tilled with water and nutrients. Variations of the latter are called land farming or composting. With IN SITU BIOREMEDIATION nutrients, an oxygen source, and sometimes microbes are pumped into the soil or aquifer under pressure through wells or spread on the surface for infiltration to the contaminated material. Based on the data contained in this status report, BIOREMEDIATION is being used to treat polynuclear aromatic hydrocarbons most frequently in the Superfund program. Figure 9 shows the classes of contaminants treated with bioremediation and the frequency with which they are treated. In CHEMICAL TREATMENT the contaminants are converted to less hazardous compounds through chemical reactions. Chemical treatment has been used five times in the Superfund program, usually to reduce a contaminant (hexavalent chromium to the trivalent form) or oxidize a contaminant (cyanide, for example). Neutralization is considered to be an available technology and is not included in this report. DECHLORINATION results in the removal or replacement of chlorine atoms bonded to hazardous compounds. Figure 10 shows the classes of contaminants for which EPA has selected dechlorination. For IN SITU FLUSHING, large volumes of water, at times supplemented with treatment compounds, are introduced to the soil, waste or ground water to flush hazardous contaminants from a site. This technology is predicated on the assumption that the injected water can be effectively isolated within the aquifer and recovered. Figure 11 gives the classes of contaminants for which EPA has selected in situ flushing and the number of times it has selected to treat them. IN SITU VITRIFICATION treats contaminated soil in place at temperatures of approximately 3000°F (1600°C). Metals are encapsulated in the glass like structure of the melted silicate compounds. Organics may be treated by combustion. Figure 12 describes the frequency and classes of contaminants for which EPA has selected vitrification. SOIL WASHING is used for two purposes. First, the mechanical action and water (sometimes with additives) physically remove the contaminants from the soil particles. Second, the agitation of the soil particles allows the smaller diameter, more highly contaminated fines to separate from the larger soil particles, thus reducing the volume of material for subsequent treatment. Figure 13 shows the classes of contaminants found at sites where EPA has selected soil washing. SOLVENT EXTRACTION operates on the principle that organic contaminants can be preferentially solubilized and removed from the waste in the correct solvent. The solvent to be used will vary depending on the waste to be treated. Figure 14 describes the classes of contaminants for which solvent extraction is selected most often. For THERMAL DESORPTION, the waste is heated in a controlled environment to cause organic compounds to volatilize from the waste. The operating temperature for thermal desorption is less than 1000°F (550°C). The volatilized contaminants will usually require further control or treatment. Figure 15 lists the contaminants most frequently treated with thermal desorption in the Superfund program. SOIL VAPOR EXTRACTION removes volatile organic constituents from the soil in place through the use of vapor extraction wells, OTHER TECHNOLOGIES, a new category in this report, includes air sparging and the contained recovery of oily wastes (CROW) technologies. Air sparging involves injecting gas into the aquifer to attach to volatile contaminants as it percolates up through the ground water and is captured with a vapor extraction system. The CROW process displaces oily wastes with steam and hot water. The contaminated oils and ground water sweep up into a more permeable area and are pumped out of the aquifer. sometimes combined with air injection wells, to strip and flush the contaminants into the air stream for further treatment. Vacuum extraction has been selected with increasing frequency for sites with volatile organic compounds (VOCs). Figure 16 shows the classes of VOCs for which soil vapor extraction is selected. Analyzing the data contained in this status report further, Figures 17, 18, 19, and 20 show the most frequently selected technologies for VOCs, metals, PAHs, and PCBs, respectively. #### **Status of Innovative Technology Implementation** Many of the innovative technologies documented in this report have been selected in the last several years. The design of these projects typically takes one to three years; therefore, relatively few innovative technologies have been contracted and installed, and even fewer have been completed (Figure 21). In the next several years, though, many projects now in design should become operational. FIGURE 21 REMEDIAL ACTIONS: PROJECT STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF FEBRUARY 1992* | | Predesign/
In Design | Design Complete/
Being Installed/
Operational | Project
Completed | Total | |--------------------------|-------------------------|---|----------------------|-------| | Soil Vapor Extraction | 65 | 18 | 1 | 84 | | Thermal Desorption | 21 | 4 | 3 | 28 | | Ex Situ Bioremediation | 17 | 7 | 1 | 25 | | In Situ Bioremediation # | 15 | 4 | 1 | 20 | | Soil Washing | 15 | 1 | 0 | 16 | | In Situ Flushing | 11 | 5 | 0 | 16 | | Dechlorination | 6 | 1 | 1 | . 8 | | Solvent Extraction | 5 | 1 | 0 | 6 | | In Situ Vitrification | 3 | 0 | 0 | 3 | | Other Innovative Treatme | ent 3 | 0 | 0 | 3 | | Chemical Treatment | 0 | 0 | 1 | 1 | | TOTAL | 161 (76%) | 41 (20%) | 8 (4%) | 210 | Data derived from 1982 – 1991 Records of Decision (RODs) and anticipated design and construction activities. [#] Includes in situ groundwater treatment. Figure 22 shows the number of projects which either entered the remedial pipeline in FY91 or progressed to a new phase (for example, design, installation, operation) since August of 1991. Of the 210 projects using innovative treatment technologies 27% are new in FY 91 and 25% have moved on to a new phase in the past six months. #### **Treatment Trains** Innovative treatment technologies in this report may be used with established or other innovative treatment technologies in treatment "trains." Technologies may be combined to reduce the volume of material requiring subsequent treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants within the same medium. Figure 23 presents the data on treatment trains contained within this report. Appendix B lists the sites where these treatment trains are being used. #### **Volume Analysis** In addition to analyzing the data collected on the 210 applications of innovative treatment technology for remedial sites based on contaminants, EPA analyzed the data based on the volume of soil treated. This volume analysis provides an indication of the scale of the projects involved. Figure 24 shows a summary of this analysis. ### FIGURE 24 QUANTITIES OF SOIL TO BE TREATED BY INNOVATIVE TECHNOLOGIES | Technology | Number of | Quantity (Cubic) | /ards) | |------------------------|------------------------------|-------------------|---------| | recimology | Superfund
Sites with Data | Range | Average | | In Situ Flushing | 11 | 5,200 — 650,000 | 94,000 | | In Situ Bioremediation | 7 |
5,000 — 250,000 | 89,000 | | Soil Vapor Extraction | 55 | 70 — 360,000 | 56,000 | | Soil Washing | 16 | 1,800 — 200,000 | 43,900 | | Ex Situ Bioremediation | 17 | 1,000 — 100,000 | 29,000 | | Solvent Extraction | 6 | 2,000 — 67,000 | 26,000 | | Dechlorination | 5 | 800 — 50,000 | 23,000 | | Thermal Desorption | 27 | 1,600 — 124,000 | 21,400 | | In Situ Vitrification | 3 | 3,600 — 5,000 | 4,400 | #### **Summary of Updates to Last Report** Each edition of this report has added new information on the applications of innovative technologies at Superfund sites as well as updating the status of innovative projects. The information added, deleted, or changed in each edition is described below to allow projects to be tracked from edition to edition. #### New in April 1992 report: Innovative treatment technologies selected in FY 91 RODs Summary information on the performance of innovative treatment technologies for completed projects. Summary information on the use of innovative and established technologies in treatment trains #### Deleted in April 1992 report: Crystal Chemical, TX—In situ vitrification U.S. Aviex, MI—In situ flushing Goose Farm, NJ—In situ flushing Marathon Battery, NJ—Enhanced volatilization Coleman Evans Wood Preserving, FL—Soil washing and ex situ bioremediation Solvent Service, CA—In situ bioremediation #### Changes in April 1992 report: Anderson Development, MI was listed as a Thermal Desorption project rather than a vitrification project. Sangamo/Crab Orchard National Wildlife Refuge, IL is no longer to be treated with in situ vitrification. Instead, the wastes will be incinerated and it is listed in Appendix A with the other incineration projects. GE Wiring Services, PR was listed under thermal desorption rather than soil washing or chemical extraction. #### New in September 1991 report: Innovative treatment technologies selected in FY 90 RODs Innovative treatment technologies used in removal actions Remedial sites where established treatment technologies (for example, incineration, solidification/stabilization) have been selected #### Expanded site/technology tables Deleted in September 1991 report: Leetown Pesticide, PA—Bioremediation Northwest Transformer, WA—In situ vitrification Harvey Knott, DE—In situ soil flushing #### Changed in September 1991 report: SMS Instruments, NY (Deer Park) was listed under vacuum extraction instead of thermal desorption. Dechlorination was classified separately from chemical treatment. (September 1991) Bioremediation was divided into ex situ and in situ bioremediation. (September 1991) Hardage/Criner, OK: The vacuum extraction remedy selected by EPA was not included in the court judgement. Bofers Noble, MI: Thermal desorption is being reconsidered, and is not included in this report. #### **Contents of this Report** This report contains several summary lists of the Superfund sites for which innovative treatment technologies have been selected or used. Table 1 lists the sites by EPA Region. Table 2 lists the sites by the general type of innovative treatment technology selected and gives the project status. Table 3 contains the detailed site-specific data on which the other tables are based. It shows each site where an innovative treatment technology has been selected and provides the site information relevant to the application of that technology. Table 4 presents information on the completed Superfund projects which have used innovative treatment technologies. It summarizes the performance information and operating data from the projects. Lastly, Appendix A includes a list of NPL sites for which established technologies have been selected for source control in RODs and Appendix B provides information on the sites using treatment trains. #### TABLE 1 #### EPA REGIONAL SUMMARY FOR INNOVATIVE TREATMENT TECHNOLOGIES Table 1 summarizes the innovative treatment technologies used at sites on the National Priorities List (NPL) and sites where emergency response actions were conducted in each EPA region. As shown in this table, the frequency of use of innovative technologies varies by region. Nine of EPA's ten regional offices have 10 or more applications of innovative treatment technologies underway. ### TABLE 1 EPA REGIONAL SUMMARY FOR INNOVATIVE TREATMENT TECHNOLOGIES | TECHNOLOGY | SITE NAME | STATE | TECHNOLOGY | SITE NAME | STATE | |-----------------------------|------------------------------------|-------|---|-----------------------------------|-------| | | REGION 1 | | REG | 10N 2 (continued) | | | Soil Vapor Extraction | Kellogg•Deering Well Field | ст | Bioremediation (In Situ gw) | Applied Environmental Services | NY | | Bioremediation (Ex Situ) | Iron Horse Park | MA | Dechlorination | Wide Beach Development | NY | | Dechlorination | Re-Solve* | MA | In Situ Flushing | Byron Barrel & Drum | NY | | Soil Vapor Extraction | Groveland Wells | MA | Soil Vapor Extraction | Applied Environmental Services | NY | | Soil Vapor Extraction | Silresim | MA | Soil Vapor Extraction | Circuitron Corporation, OU 1 | NY | | Soil Vapor Extraction | Wells G&H | MA | Soil Vapor Extraction | Genzale Plating Company, OU 1 | NY | | Solvent Extraction | Norwood PCBs | MA | Soil Vapor Extraction | Mattiace Petrochemicals Company | NY | | Thermal Desorption | Cannon Engineering/Bridgewater | MA | Soil Vapor Extraction | SMS Instruments (Deer Park) | NY | | Thermal Desorption | Re-Solve* | MA | Soil Vapor Extraction | Solvent Savers* | NY | | Solvent Extraction | O'Connor | ME | Soil Vapor Extraction | Vestal Water Supply 1-1 | NY | | Solvent Extraction | Pinette's Salvage Yard | ME | Thermal Description | American Thermostat | NY | | Thermal Desorption | McKin | ME | Thermal Desorption | Claremont Polychemical - Soil | NY | | Thermal Description | Union Chemical Co., OU 1 | ME | Thermal Description | fulton Terminals, Soil Treatment | NY | | Air Sparging | South Municipal Water Supply Wells | _ | Thermal Desorption | Sarney Farm | NY | | Soil Vapor Extraction | Mottolo Supply | NR | Thermal Description | Solvent Savers* | NY | | Soil Vapor Extraction | South Municipal Water Supply Wells | | Thermal Desorption | GE Wiring Devices | PR | | Soil Vapor Extraction | Tinkham Garage | NH | Soil Vapor Extraction | Upjohn Manufacturing Co. | PR | | Thermal Desorption | Ottati & Goss | NH | DOTE TOPOL EXCLUSION | opjoint nameractoring co. | • • • | | Soil Vapor Extraction | Stamina Mills | RI | *************************************** | | | | TOTAL TAPOR CALIBORION | Jeanna Prees | K 1 | | REGION 3 | | | | REGION 2 | | Bioremediation (Ex Situ) | Whitmoyer Laboratories, OU 3 | PA | | | | | Crow Technology | Brodhead Creek, OU 1 | PA | | Bioremediation (In Situ gw) | FAA Technical Center* | LN | Soil Vapor Extraction | Bendix | PA | | Bioremediation (In Situ) | Swope Oil & Chem Co., OU 2* | N.J | Soil Vapor Extraction | Cryochem, OU 3 | PA | | Dechlorination | Myers Property* | LN | Soil Vapor Extraction | Henderson Road | PA | | In Situ Flushing | Lipari Landfill | NJ | Soil Vapor Extraction | Lord-Shope Landfill | PA | | In Situ Flushing | Naval Air Engineering Center, OU 1 | NJ | Soil Vapor Extraction | Tyson's Dump | PA | | In Situ Flushing | Naval Air Engineering Center, OU 2 | NJ | Thermal Desorption | U.S.A. Letterkenny SE Area, OU 1 | PA | | In Situ Flushing | Naval Air Engineering Center, OU 4 | NJ | Bioremediation (Ex Situ) | L.A. Clarke & Sons, Lagoon Sludge | VA | | In Situ Flushing | Vineland Chemical, OU 1 and OU 2* | ИJ | Bioremediation (In Situ) | L. A. Clarke & Sons, OU 1 (Soil)* | VA | | Soil Vapor Extraction | A O Polymer, Soil treatment phase | NJ | Chemical Treatment | Avtex Fibers (Removal) | VA | | Soil Vapor Extraction | FAA Technical Center* | NJ | Dechlorination | Saunders Supply Co, OU 1 | VA | | Soil Vapor Extraction | Garden State Cleaners | NJ | In Situ Flushing | L. A. Clarke & Sons, OU 1 (Soil)* | VA | | Soil Vapor Extraction | South Jersey Clothing | NJ | In Situ Flushing | U.S. Titanium | VA | | Soil Vapor Extraction | Swope Oil & Chem Co., OU 2* | NJ | Soil Vapor Extraction | Arrowhead Associates/Scovill, | VA | | Soil Washing | Ewan Property* | NJ | Thermal Desorption | Saunders Supply Co, DU 1 | VA | | Soil Washing | King of Prussia | NJ | Bioremediation (Ex Situ) | Ordnance Works Disposal | WV | | Soil Washing | Myers Property* | NJ | | | | | Soil Washing | Vineland Chemical, OU 1 and OU 2* | NJ | | | | | Solvent Extraction | Ewan Property* | NJ | | <u>REG10N_4</u> | | | Thermal Desorption | Caldwell Trucking | NJ | | | | | Thermal Desorption | Metaltec/Aerosystems, OU 1 | NJ | In Situ Flushing | Ciba-Geigy Corp | AL | | Thermal Description | Reich Farms | NJ | Thermal Desorption | Ciba-Geigy Corp | AL | | Thermal Description | Waldick Aerospace Devices | NJ | Bioremediation (Ex Situ) | American Creosote Works* | FL | | Bioremediation (Ex Situ) | General Motors/Central Foundry | NY | Bioremediation (Ex Situ) | Brown Wood Preserving | FL | | Bioremediation (In Situ) | Applied Environmental Services | NY | Bioremediation (Ex Situ) | Cabot Carbon/Koppers* | FL | | Dechlorination | Signo Trading/Mt. Vernon (Removal) | NY | Bioremediation (Ex Situ) | Dubose Oil Products | FL | ^{*} An asterisk indicates that more than one innovative treatment technology will be used for the site. ### TABLE 1 (continued) EPA REGIONAL SUMMARY FOR INNOVATIVE TREATMENT TECHNOLOGIES | TECHNOLOGY | SITE NAME | STATE | TECHNOLOGY | SITE NAME | STATE | |---|-----------------------------------|-------|--------------------------|--|----------| | RE | GION 4 (continued) | | RI RI | EGION 5 (continued) | | | Bioremediation (In Situ gw) | Cabot Carbon/Koppers* | FL | In Situ Flushing | Rasmussen Dump | MI | | Bioremediation (In Situ) | Cabot Carbon/Koppers* | FL | In Situ Vitrification | Ionia City Landfill | MI | | Soil Washing | American Creosote Works* | FL
 In Situ Vitrification | Parsons Chemical (Removal) | Mi | | Soil Washing | Cabot Carbon/Koppers* | FL | Soil Vapor Extraction | Chem Central | Mi | | Soil Vapor Extraction | Robins AFB, Landfill and Sludge | GA | Soil Vapor Extraction | Kysor Industrial | Mi | | Solvent Extraction | General Refining (Removal) | GA | Soil Vapor Extraction | Springfield Township Dump | MI | | Dechlorination | Smith's Farm Brooks | KY | Soil Vapor Extraction | Sturgis Municipal Well Field | MI | | Bioremediation (Ex Situ) 🐪 | Southeastern Wood Preserving | MS | Soil Vapor Extraction | ThermoChem, Inc. OU 1 | MÍ | | | (Removal)* | | Soil Vapor Extraction | Verona Well Field (Thomas Solvent) | MI | | Soil Washing | Southeastern Wood Preserving | MS | Soil Vapor Extraction | Verona Well Field, OU 2 | MI | | | (Removal)* | | Thermal Description | Anderson Development (Amendment) | iM | | Bioremediation (Ex Situ) | Cape Fear Wood Preserving* | NC | Thermal Desorption | Carter Industries | NI. | | Bioremediation (Ex Situ) | Charles Macon Lagoon* | NC | Bioremediation (Ex Situ) | Burlington Northern Railroad Tie | MN | | In Situ Flushing | JADCO-Hughes | NC | | Treating Plant | FRE | | Soil Washing | Cape Fear Wood Preserving* | NC | Bioremediation (Ex Situ) | Joslyn Manufacturing and Supply | MN | | Solvent Extraction | Carolina Transformers | NC | Soil Vapor Extraction | Long Prairie GW Contemination | MN | | Soil Vapor Extraction | Charles Macon Lagoon, OU 1* | NC | Thermal Description | University of Minnesota | MN | | Soil Vapor Extraction | JADCO-Hughes | NC | Bioremediation (In Situ) | Allied Chem & Ironton Coke, OU 2 | на | | Thermal Desorption | Aberdeen Pesticide Dumps, OU 4 | NC | Soil Vapor Extraction | Miami County Incinerator | OH | | Chemical Treatment | Palmetto Wood Preserving | SC | Soil Vapor Extraction | Pristine (Amendment) | OH | | Soil Vapor Extraction | Hinson Chemical (Removal) | SC | Soil Vapor Extraction | Zanesville Well Field* | OH | | Soil Vapor Extraction | Medley Farm, OU 1 | SC | Soil Weshing | United Scrap Lead/SIA | OH | | Soil Vapor Extraction | SCRDI Bluff Road | SC | Soil Washing | Zanesville Well Field* | OH | | Thermal Desorption | Sangamo/Twelve Mile/Hartwell PCB | SC | Bioremediation (Ex Situ) | Moss-American* | WI | | Thermal Desorption | Wamchem | SC | Bioremediation (In Situ) | Onalaska Municipal Landfill | Wi | | Dechlorination | Arlington Blending & Packaging | TN | Soil Vapor Extraction | Hegen Form | Ψi | | Thermal Desorption | Arlington Blending & Packaging | TN | Soil Vapor Extraction | Wausau Groundwater Contamination | WI | | *************************************** | | | Soil Washing | Moss-American* | WI | | | REGION 5 | | | | | | Bioremediation (Ex Situ) | Galesburg/Koppers | IL | | REGION 6 | | | Thermal Desorption | Acme Solvent Reclaiming, Inc.* | ĪĹ | Soil Washing | Arkwood | AR | | Thermal Desorption | Outboard Marine/Waukegan Harbor | ĪĹ | Bioremediation (Ex Situ) | Old Inger Oil Refinery | LA | | Soil Vapor Extraction | Acme Solvent Reclaiming, Inc.* | ĬĹ | Bioremediation (In Situ) | Atchison/Santa Fe/Clovis | NM | | Bioremediation (In Situ) | Seymour Recycling* | IN | Dechlorination | Fruitland Drum (Removal) | NM | | Bioremediation (In Situ gw) | Seymour Recycling | IN | Soil Vapor Extraction | South Valley | NM | | In Situ Flushing | Ninth Avenue Dump | IN | Dechlorination | Tenth Street Dump/Junkyard | OK | | Soil Vapor Extraction | Enviro. Conservation and Chemical | IN | Soil Vapor Extraction | Tinker AFB (Soldier Creek Bldg.) | OK | | Soil Vapor Extraction | Fisher Calo Chem | IN | Solvent Extraction | Traband Warehouse (Removal) | OK | | Soil Vapor Extraction | MIDCO I | IN | Bioremediation (Ex Situ) | North Cavalcade Street | ΤX | | Soil Vapor Extraction | Main Street Well Field | IN | Bioremediation (Ex Situ) | Sheridan Disposal Services | TX | | Soil Vapor Extraction | Seymour Recycling* | in | Bioremediation (In Situ) | French Limited | TX | | Soil Vapor Extraction | Wayne Waste Reclamation | IN | Dechlorination | | | | Bioremediation (Ex Situ) | Cliff/Dow Dump* | M1 | In Situ Flushing | Sol Lynn/Industrial Transformers South Cavalcade Street* | TX | | Bioremediation (In Situ gw) | Cliff/Dow Dump* | MI | Soil Vapor Extraction | Petro-Chemical Systems, Inc. | TX
TX | | Chemical Treatment | PBM Enterprises (Removal) | IM. | Sold subor Everage (10) | recro offented aystems, Inc. | 1 / | An asterisk indicates that more than one innovative treatment technology will be used for the site. ### TABLE 1 (continued) EPA REGIONAL SUMMARY FOR INNOVATIVE TREATMENT TECHNOLOGIES | TECHNOLOGY | SITE NAME | STATE | · TECHNOLOGY | SITE NAME | STATE | |---|--|--|--|------------------------------------|-------| | <u>RE</u> | GION 6 (continued) | | 1 | REGION 9 | | | Soil Washing | Koppers/Texarkana | TX | Bioremediation (In Situ) | Gila River Indian Reservation* | 47 | | Soil Washing | South Cavalcade Street* | ŤΧ | Broteinediacion (III 3160) | (Removal) | AZ | | Solvent Extraction | United Creosoting | TX | Chemical Treatment | Gila River Indian Reservation* | AZ | | Air Sparging | Petro-Chemical Systems, Inc. | ŤΧ | | (Removal) | MZ | | | *************************************** | en + + + + + + + + + + + + + + + + + + + | Chemical Treatment | Stanford Pesticide #1 | AZ | | | | | Soil Vapor Extraction | Indian Bend Wash, South Area, OU 1 | AZ | | | REGION 7 | | Soil Vapor Extraction | Mesa GW Contamination (RCRA) | ΑZ | | Dispensational at the plant | , | | Soil Vapor Extraction | Motorola 52nd Street | AZ | | Bioremediation (In Situ gw) | | IA | Soil Vapor Extraction | Phoenix-Goodyear Airport Area | ΑZ | | Bioremediation (Ex Situ) | Vogel Paint & Wax | IA | Bioremediation (Ex Situ) | J.H. Baxter | CA | | Bioremediation (In Situ) | Fairfield Coal and Gas | IA | Bioremediation (Ex Situ) | Koppers Company, Inc. (Oroville)* | CA | | Bioremediation (Ex Situ) | Scott Lumber (Removal) | MO | Bioremediation (In Situ gw) | Castle, AFB, OU 1 | CA | | Dechlorination | Crown Plating (Removal) | MO | Bioremediation (In Situ) | Koppers Company, Inc. (Oroville)* | CA | | In Situ Flushing | Lee Chemical | MO | Bioremediation (In Situ) | Roseville Drums (Removal) | CA | | Soil Vapor Extraction | Hastings GW Contamination | NE | Soil Vapor Extraction | Fairchild Semiconductor (San Jose) | CA | | Cail Name Futures | (Col. Ave.) | | Soil Vapor Extraction | Fairchild Semiconductor/MTV-1 | CA | | Soil Vapor Extraction | Hastings GW Contamination | NE | Soil Vapor Extraction | Fairchild Semiconductor/MTV-II | CA | | Cail Wassa Fubsishi- | (Far Marco) | | Soil Vapor Extraction | IBM (San Jose) | CA | | Soil Vapor Extraction | Hastings GW Contamination, Well #3 | NE | Soil Vapor Extraction | Intel, Mountain View | CA | | Soil Vapor Extraction | Lindsay Manufacturing | NE | Soil Vapor Extraction | Intersil/Siemens | CA | | Soil Vapor Extraction | Waverly Groundwater Contamination | NE | Soil Vapor Extraction | Monolithic Memories | CA | | *************************************** | | | Soil Vapor Extraction: | National Semiconductor (ADM) | CA | | | | | Soil Vapor Extraction | Raytheon, Mountain View | CA | | | REGION 8 | | Soil Vapor Extraction | Signetics (AMD) | CA | | | | | Soil Vapor Extraction | Solvent Service* (RCRA) | CA | | In Situ Vitrification | Rocky Mountain Arsenal OU 16 | CO | Soil Vapor Extraction | Spectra Physics, OU 1 | CA | | Soil Vapor Extraction | Chemical Sales Company, OU 1 (RCRA) | | Soil Vapor Extraction | Teledyne Semiconductors | CA | | Soil Vapor Extraction | Martin Marietta (Denver Aerospace)* | CO | Soil Vapor Extraction | Van Waters & Rogers | CA | | D-81 M P-AA | (RCRA) | | Soil Vapor Extraction | Watkins-Johnson | CA | | Soil Vapor Extraction | Rocky Mountain Arsenal, OU 18 | CO | Soil Washing | FMC (Fresno) | CA | | Soil Vapor Extraction | Sand Creek Industrial, OU 1 | CO | Soil Washing | Koppers Company, Inc. (Oroville)* | CA | | Soil Washing | Sand Creek Industrial, OU 5 | CO | Bioremediation (In Situ) | Poly-Carb (Removal)* | NV | | Thermal Desorption | Martin Marietta (Denver Aerospace)* (RCRA) | СО | In Situ Flushing | Poly-Carb (Removal)* | NV | | Bioremediation (In Situ gw) | Burlington Northern (Somers Plant)* | MT | ······································ | | ····· | | Bioremediation (In Situ gw) | Libby Ground Water Contamination* | MT | | REGION 10 | | | Bioremediation (Ex Situ) | Burlington Northern (Somers Plant)* | MT | | | | | Bioremediation (Ex Situ) | Libby Ground Water Contamination* | MT | In Situ Flushing | Union Pacific Railroad Studge | D1 | | Bioremediation (Ex Situ) | Wasatch Chemical* | UT | In Situ Flushing | United Chrome Products | OR | | In Situ Vitrification | Wasatch Chemical* | UT | Soil Vapor Extraction | Commencement Bay/S. Tacoma Channel | | An asterisk indicates that more than one innovative treatment technology will be used for the site. #### TABLE 2 #### PROJECT STATUS SUMMARY BY INNOVATIVE TREATMENT TECHNOLOGY Table 2 lists the applications of innovative treatment technologies at NPL and removal sites by technology and summarizes the status of the specific technology application. The symbols used in this table are: - PD In **predesign**. A site may be considered in predesign if EPA is negotiating the consent decree for the design with the responsible party, the lead agency is preparing the predesign report, the lead agency is contracting for the design firm, or the lead agency is conducting a treatability study or field investigation before beginning actual design work. - D In design. A site is considered in design after the design contractor has begun work. - D/I This symbol is used if the **design** work has been completed but **installation** work has not yet begun when this report is published. - I Being installed. An innovative treatment
technology is "being installed" after the construction contract has been awarded and before the treatment system has begun operation. For some technologies, this is a relatively short phase of the project because they are assembled on site quickly. For other technologies, the period of installation lasts several construction seasons. - O Operational. A treatment technology is operational once it is constructed and has been proven to be functional. The length of time required to complete the operation phase depends on such factors as the nature of the technology, the quantity of material to be treated, and the concentration of the contaminants at the start of treatment. - C Completed. A treatment technology project is considered complete when the operation of the treatment technology ceases. Other site activities may still be planned or ongoing. TABLE 2 PROJECT STATUS SUMMARY BY INNOVATIVE TREATMENT TECHNOLOGY | REGION | BIOREMEDIATION (EX SITU) | STATUS | REGION | BIOREMEDIATION (IN SITU) (continued) | STATUS | |----------|---|--------|---|---|---| | 01 | Iron Horse Park, MA | | 07 | Principal Company of the | | | 02 | General Motors/Central Foundry Division, OU 1, NY | Đ | 07 | Fairfield Coal and Gas, IA | D | | 03 | Whitmoyer Laboratories, OU 3, PA | 0 | 08 | Burlington Northern (Somers Plant), MT (Ground water) | | | 03 | L.A. Clarke & Sons, Lagoon Sludge OU, VA | = | 08 | Libby Ground Water Contamination, MT (Ground water) | 0 | | 03 | Ordnance Works Disposal, WV | PD | 09 | Gila River Indian Reservation, AZ (Removal) | C | | 04 | American Creosote Works, FL | PD | 09 | Castle AFB, CA (Ground water) | D | | 04 | Brown Wood Preserving, FL | D | 09 | Koppers Company, Inc. (Oroville Plant), CA | D | | 04 | Cobot Corbon/Konness 51 | C | 09 | Roseville Drums, CA (Removal) | С | | 04 | Cabot Carbon/Koppers, FL | D | 09 | Poly-Carb, NV (Removal) | С | | 04 | Dubose Oil Products, FL | D | | | | | | Southeastern Wood Preserving, MS (Removal) | 0 | | | *************************************** | | 04 | Cape Fear Wood Preserving, NC | D/1 | REGION | CHEMICAL TREATMENT | STATUS | | 04 | Charles Macon Lagoon, NC | PD | | | 511100 | | 05 | Galesburg/Koppers, IL | D | 03 | Avtex Fibers, VA (Removal) | С | | 05 | Cliff/Dow Dump, MI | PD | 04 | Palmetto Wood Preserving, SC | · č | | 05 | Burlington Northern Railroad Tie Treating Plant, MN | 0 | 05 | PBM Enterprises (Van Dusen Airport Service), MI | C | | 05 | Joslyn Manufacturing and Supply Co., MN | 0 | - | (Removal) | · | | 05 | Moss-American, Wl | Ð | 09 | Gila River Indian Reservation, AZ (Removal) | С | | 06 | Old Inger Oil Refinery, LA | 0 - | 09 | Stanford Pesticide #1, AZ (Removal) | | | 06 | North Cavalcade Street, TX | D | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Stanford (Caticide W), NZ (Removal) | · | | 06 | Sheridan Disposal Services, TX | PD | *************************************** | ······································ | • | | 07 | Vogel Paint & Wax, IA | 1 | DECION | DECIII ORTHATION | | | 07 | Scott Lumber, MO (Removal) | Č | REGION | DECHLORINATION | <u>STATUS</u> | | 08 | Burlington Northern (Somers Plant), MT | Ď | 01 | Do Colum 114 | | | 08 | Libby Ground Water Contamination, MT | ō | 01 | Re-Solve, MA | PD | | 08 | Wasatch Chemical, UT | PD | 02 | Myers Property, NJ | PD | | 09 | J.H. Baxter, CA | 'n | 02 | Signo Trading/Mt. Vernon, NY (Removal) | Ç | | 09 | Koppers Company, Inc. (Oroville Plant), CA | D | 02 | Wide Beach Development, NY | С | | | · · · · · · · · · · · · · · · · · · · | U | 03 | Saunders Supply Company, OU 1 | PD | | | *************************************** | | 04 | Smith's Farm Brooks, KY | D | | REGION | BIOREMEDIATION (IN SITU) | CTATUC | 04 | Arlington Blending & Packaging, TN | PD | | KEUTUN | DIGHT DIRECTOR (IN STILL) | STATUS | 06 | Fruitland Drum, NM (Removal) | ı | | 02 | FAA Technical Center, NJ (Ground water) | | 06 | Tenth Street Dump/Junkyard, OK | D | | 02 | Swope Oil & Chem Co., OU 2, NJ | D/1 | 06 | Sol Lynn/Industrial Transformers, TX | D/1 | | 02 | Applied Environmental Services, OU 1, NY | PD · | 07 | Crown Plating, MO (Removal) | С | | 02 | Applied Environmental Services (Ground Water) | PD | | | | | 03 | A Clocks & Conta & Conta & Conta Water) | PD | | | *************************************** | | 04 | L. A. Clarke & Sons, OU 1, (Soils), VA | PD | REGION | IN SITU FLUSHING | STATUS | | 04 | Cabot Carbon/Koppers, FL | D | | | | | 05 | Cabot Carbon/Koppers, FL (Ground water) | D | 02 | Lipari Landfill, NJ | 0 | | 05 | Seymour Recycling, IN | С | 02 | Naval Air Engineering Center, OU 1, NJ | 0 | | 05
05 | Seymour Recycling, IN (Ground water) | 0 | 02 | Naval Air Engineering Center, OU 2, NJ | 1 | | | Cliff/Dow Dump, MI (Ground water) | PD | 02 | Naval Air Engineering Center, OU 4, NJ | i | | 05
05 | Allied Chem & Ironton Coke, OU 2, OH | PD | 02 | Vineland Chemical, OU 1 and OU 2, NJ | Ď | | 05 | Onalaska Municipal Landfill, WI | Ð | 02 | Byron Barrel & Drum, NY | PD | | 06 | Atchison/Santa Fe/Clovis, NM | 1 | 03 | L. A. Clarke & Sons, OU 1 (Soils), VA | PD | | 06 | French Limited, TX | D | 03 | U.S. Titanium, VA | PD | | 07 | People's Natural Gas, IA (Ground water) | PD | 04 | Ciba-Geigy (MacIntosh Plant), AL | PD | | | | | 1 | 2, 1 == 1 == 1 == 1 == 1 == 1 == 1 == 1 | , , | ### TABLE 2 (continued) PROJECT STATUS SUMMARY BY INNOVATIVE TREATMENT TECHNOLOGY | REGION | IN SITU FLUSHING (continued) | STATUS | REGION | SOIL VAPOR EXTRACTION (continued) | STATUS | |--------|---|---|--------|---|--------| | 04 | JADCO-Hughes, NC | D | 04 | Robbins AFB, Landfill and Sludge Lagoon, OU 1, GA | | | 05 | Ninth Avenue Dump, IN | Ď | 04 | Charles Macon Lagoon, OU 1, NC | PD | | 05 | Rasmussen Dump, Mi | Ď | 04 | JADCO-Hughes, NC | PD | | 06 | South Cavalcade Street, TX | Ď | 04 | Hinson Chemical, SC (Removal) | D | | 07 | Lee Chemical, MO | PD | 04 | Medley Farm, OU 1, SC | . C | | 09 | Poly-Carb, NV (Removal) | C | 04 | SCROI Bluff Road, SC | PD | | 10 | Union Pacific Railroad Sludge Pit, ID | PD | 05 | Acme Solvent Reclaiming, Inc., OU 2, IL | D | | 10 | United Chrome Products, OR | o o | 05 | Enviro. Conservation and Chemical (Amendment), IN | PD | | | • | | 05 | Fisher Calo Chem, IN | PD | | | | *************************************** | 05 | MIDCO I, IN | D | | REGION | IN SITU VITRIFICATION | STATUS | 05 | Main Street Well Field, IN | PD | | | | STATOS | 05 | Seymour Recycling, IN | PD | | 05 | Ionia City Landfill, MI | D | 05 | Wayne Waste Réclamation, IN | 1 | | 05 | Parsons Chemical (ETM Enterprise), MI (Removal) | D/1 | 05 | Chem Central, MI | PD | | 08 | Rocky Mountain Arsenal, OU 16, CO | 0 | l os | Kysor Industrial, MI | PD | | 08 ' | Wasatch Chemical, UT | PD | 05 | Springfield Township Dump, MI | D | | | | | őš | Sturgis Municipal Well Field, MI | PD | | | *************************************** | | 05 | ThermoChem, Inc., OU 1, MI | PD | | REGION | SOIL VAPOR EXTRACTION | STATUS | 05 | Verona Well Field (Thomas Solvent/Raymond Road), MI | PD | | | SOLE IN OIL EXPROST ON | 31A103 | 05 | Verona Well Field, OU 2, MI | 0 | | 01 | Kellogg-Deering Well Field, CT | D | 05 | Long Prairie Groundwater Contamination, MN | PD | | 01 | Groveland Wells, MA | D | 05 | Miami County Incinerator, OH | 0/1 | | 01 | Silresim, MA | PD | 05 | Pristine (Amendment), OH | PD | | 01 | Wells G&H, MA | PD | 05 | Zanesville Well Field, OH | 0 | | 01 | Mottolo Supply, NH | PD | 05 | Hagen Farm. WI | PD | | 01 | South Municipal Water Supply Well, NH | D | 05 | - • | D | | 01 | Tinkham Garage, NH | D | 06 | Wausau Groundwater Contamination, WI | D | | 01 | Stamina Hills, RI | _ | 06 | South Valley, NM | I | | 02 | A O Polymer, Soil treatment phase, NJ | PD | 06 |
Tinker AFB (Soldier Creek Bldg. 3001), OK | D | | 02 | FAA Technical Center, NJ | PD | 08 | Petro-Chemical Systems, Inc., OU 2, TX | PD | | 02 | Garden State Cleaners, NJ | D/1 | 07 | Hastings GW Contamination (Colorado Ave), NE | D | | 02 | · • | PD | | Hastings GW Contamination (Far-Mar Co.), NE | D | | 02 | South Jersey Clothing, NJ | PD | 07 | Hastings GW Contamination, Well No. 3, NE | I | | 02 | Swope Oil & Chem Co., OU 2, NJ | PD | 07 | Lindsey Manufacturing, NE | PD | | 02 | Applied Environmental Services, OU 1, NY | PD | 07 | Waverly Groundwater Contamination, NE | 0 | | 02 | Circuitron Corporation, OU 1, NY | PD | 80 | Chemical Sales Company, OU 1, CO | D | | | Genzale Plating Company, GU 1, NY | D | 08 | Martin Marietta (Denver Aerospace), CO | PD | | 02 | Mattiace Petrochemicals Company, OU 1, NY | PD | 08 | Rocky Mountain Arsenal, OU 18, CO | D | | 02 | SMS Instruments (Deer Park), NY | 1 | 08 | Sand Creek Industrial, OU 1, CO | D | | 02 | Solvent Savers, NJ | PD | . 09 | Indian Bend Wash, South Area, OU 1, AZ | D | | 02 | Vestal Water Supply 1-1, NY | PD | 09 | Mesa Ground Water Contamination, AZ | PD | | 02 | Upjohn Manufacturing Co., PR | C | 09 | Motorola 52nd Street, AZ | D | | 03 | Bendix, PA | PD | 09 | Phoenix-Goodyear Airport Area (North & South Fac), AZ | D | | 03 | Cryochem, OU 3, PA | D | 09 | Fairchild Semiconductor (San Jose), CA | 0 | | 03 | Henderson Road, PA | 0 | 09 | Fairchild Semiconductor/MTV-I, CA | D | | 03 | Lord-Shope Landfill, PA | D | 09 | Fairchild Semiconductor/MTV-II, CA | D | | 03 | Tyson's Dump, PA | 0 | ' 09 | IBM (San Jose), CA | O | | 03 | Arrowhead Associates/Scovill, OU 1, VA | PD | 09 | Intel, Mountain View, CA | D | ### TABLE 2 (continued) PROJECT STATUS SUMMARY BY INNOVATIVE TREATMENT TECHNOLOGY | REGION | SOIL VAPOR EXTRACTION (continued) | STATUS | |--------|--|--------| | 09 | Intersil/Siemens, CA | 0 | | 09 | Monolithic Memories, CA | PD | | 09 | National Semiconductor and Advanced Micro Device, CA | PD | | 09 | Raytheon, Mountain View, CA | D | | 09 | Signetics (AMD), CA | 0 | | 09 | Solvent Service, CA | 0 | | 09 | Spectra Physics, OU 1, CA | ī | | 09 | Teledyne Semiconductors, CA | ī | | 09 | Van Waters and Rogers, CA | PD . | | 09 | Watkins-Johnson, CA | D | | 10 | Commencement Bay/S. Tacoma Channel/Well 12A, WA, | Ī | | REGION | SOIL WASHING | STATUS | | 02 | Ewan Property, NJ | PD | | REGION | SOIL WASHING | <u>STATUS</u> | |--------|--|---------------| | 02 | Ewan Property, NJ | PD | | 02 | King of Prussia, NJ | D | | 02 | Myers Property, NJ | PD | | 02 | Vineland Chemical, OU 1 and OU 2, NJ | D | | 04 | American Creosote Works, FL | D | | 04 | Cabot Carbon/Koppers, FL | D | | 04 | Southeastern Wood Preserving, MS (Removal) | 0 | | 04 | Cape Fear Wood Preserving, NC | D/I | | 05 | United Scrap Lead/SIA, OH | D | | 05 | Zanesville Well Field, OH | PD | | 05 | Moss-American, WI | D | | 06 | Arkwood, AR | PD | | 06 | Koppers/Texarkana, TX | PD | | 06 | South Cavalcade Street, TX | D | | 08 | Sand Creek Industrial, OU 5, CO | D | | 09 | FMC (Fresno), CA | PD | | 09 | Koppers Company, Inc. (Oroville Plant), CA | D | | REGION | SOLVENT EXTRACTION | STATUS | |--------|---------------------------------|--------| | 01 | Norwood PCBs, MA | PD | | 01 | O'Connor, ME | D | | 01 | Pinette's Salvage Yard, ME | D/I | | 02 | Ewan Property, NJ | PD | | 04 | General Refining, GA (Removal) | C | | 04 | Carolina Transformers, NC | PD | | 06 | Traband Warehouse, OK (Removal) | C | | 06 | United Creosoting, TX | D | | REGION | THERMAL DESORPTION | STATUS | |--------|---|--------| | 01 | Cannon Engineering/Bridgewater, MA | С | | 01 | Re-Solve, MA | PD | | 01 | RcKin, ME | | | 01 | Union Chemical Co., OU 1, ME | D | | 01 | Ottati & Goss, NH | C | | 02 | Caldwell Trucking, NJ | D | | 02 | Metaltec/Aerosystems, OU 1 - Soil Treatment, NJ | D/1 | | 02 | Reich Farms, NJ | D | | 02 | Waldick Aerospace Devices, NJ | D/1 | | 02 | American Thermostat, NY | D | | 02 | Claremont Polychemical - Soil Remedy, NY | D | | 02 | Fulton Terminals, Soil Treatment, NY | D | | 02 | Sarney Farm, NY | D | | 02 | Solvent Savers, NY | PD | | 02 | GE Wiring Devices, PR | D | | 03 | U.S.A. Letterkenny SE Area, OU 1, PA | PD | | 03 | Saunders Supply Co, OU 1, VA | PD | | 04 | Ciba-Geigy (MacIntosh Plant), AL | PD | | 04 | Aberdeen Pesticide Dumps, OU 4, NC | PD | | 04 | Sangamo/Twelve Mile/Hartwell PCB, SC | PD | | 04 | Vanchen, SC | D | | 04 | Arlington Blending & Packaging Co., OU 1, TN | PD | | 05 | Acme Solvent Reclaiming, Inc., OU 2, IL | PD | | 05 | Outboard Marine/Waukegan Harbor, OU 3, IL | 0 | | 05 | Anderson Development (ROD Amendment), MI | 0 | | 05 | Carter Industries, MI | PD | | 05 | University of Minnesota, MN | D | | - 08 | Martin Marietta (Denver Aerospace), CO | PD | | REGION | OTHER TECHNOLOGIES | STATUS | | REGION | OTHER TECHNOLOGIES | STATUS | |--------|--|--------| | 01 | South Municipal Water Supply Well, NH | D | | 03 | Brodhead Creek, OU 1, PA | PD | | 06 | Petro-Chemical Systems, Inc., OU 2, TX | PD | #### TABLE 3 #### DETAILED SITE INFORMATION BY TREATMENT TECHNOLOGY Table 3 is the principal part of this document. It contains the most detailed, site-specific information for sites where innovative treatment has been selected. The columns of Table 3 present the following information: #### Site Name, State, Region, ROD Date This column identifies the site and the operable unit for which innovative treatment was selected. A Record of Decision (ROD) documents the selection of remedy in the remedial program. The date shown in this column is the date a ROD was signed by an EPA official. An asterisk (*) in this column indicates that a treatability study has been completed for this technology at this site. #### Specific Technology The second column describes the specific type of technology selected within a general category of innovative treatment. For example, within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen. #### **Site Description** This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently selected innovative technology for wood preserving sites. #### Media (Quantity) This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort was made to include the maximum depth of the treatment to provide the reader with another important parameter regarding the application. #### **Key Contaminants Treated** The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. There may be other contaminants as well that will be treated. Other contaminants that may be present, but are not being addressed by the listed technology, are not included. #### Status This column gives the status of the application of the innovative treatment technology. Predesign indicates that the ROD has been signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is in design, the engineering documents needed to contract and build the remedy are being prepared. If a remedy is being installed, the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is operational if it is constructed and is now being operated as a treatment system and it is completed if the goals of the ROD for that treatment technology have been met and treatment ceases. One purpose of this column is to identify opportunities to vendors to become involved in the next phase of the projects. Whenever possible, the season and year that the current phase will end is given. This is identified as the "completion planned" date. #### **Lead Agency, Treatment Contractor** The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties will conduct the remedy with EPA/State oversight (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction through its contractors, the State may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may act for EPA to manage the design or construction. Whichever agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology is also identified if the lead agency has selected one. #### Contacts/Phone This final column gives the names and telephone numbers of useful contacts for the site or technology. The first name is usually the EPA Remedial Project Manager (RPM) (for remedial actions) or On-Scene Coordinator (OSC) (for emergency response actions) responsible for the site. If a remedy is being managed by the State, the name and phone number of the State RPM is also provided. Information on any other useful contacts is provided. #### **Bioremediation (Ex Situ)** | | bioremediation (EX Situ) | | | | | | | | | | | |--------|---|--|--|---|---
--|--|--|--|--|--| | Region | Site Name, State (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | | | | | 1 | Iron Horse Park,* MA
(09/15/88) | Land treatment | Industrial and railyard waste | Studge 25,000 | VOCS, PAHS | Operational; Completion
planned Summer 1995 | PRP lead/Federal
oversight; ENSR
Consulting | Don McElroy
617-223-5571
FTS-833-1571 | | | | | 2 | General Motors/Central
Foundry Division, OU1,
NY (12/17/90) | Slurry phase | Machine shops
Engine casting
facility | Soil (100,000
cy), Sludge
(91,000 cy
from lagoon),
Sediments
(62,000 cy) | PCBs | In design; Design
completion planned Summer
1994 | PRP lead/Federal
oversight | Lisa Carson
212-264-6857
FTS-264-6857 | | | | | 3 | Whitmoyer Laboratories,
OU3, PA (12/31/90) | Bioremediation (Ex
Situ (to be used
with iron-based
fixation) | Other organic
chemical
manufacturing | Soil (5,600
cy, combined),
Sediments | VOCs (TCE), SVOCs
(Aniline) | In design; Design
completion planned Winter
1994 | PRP lead/Federal
oversight | Chris Corbett
215-597-6906
FTS-597-6906 | | | | | 3 | L.A. Clarke & Sons,
Lagoon Sludge OU, VA
(03/31/88) | Sturry phase in tanks | Wood
preserving | Sludge
(quantity
unknown) | PAHs (Creosote) | Predesign; PD completion
planned Spring 1993 | PRP lead/federal
oversight | Gene Wingert
215-597-1727
FTS-597-1727 | | | | | 3 | Ordnance Works
Disposal, WV (09/29/89) | Land treatment | Chemical
manufacturing | Soil (13,500
cy) | PAHs
(Carcinogenic) | Predesign; PD completion
planned Summer 1993 | PRP tead/federal
oversight | Drew Lausch
215-597-1286
FTS-597-1286 | | | | | 4 | American Creosote
Works,* FL (09/28/89)
See also Soil Washing | Slurry phase
(Preceded by soil
washing) | Wood
preserving | Soil (fines
from washing
36,500 cy) | SVOCs (PCP),
Dioxins, PAHs
(Creosote) | In design; Design completion planned Summer 1992. The design will be a performance spec and is expected to be available for bid during this summer | Federal lead/Fund
financed | Madolyn Streng
404-347-2643
FTS-257-2643
Charles Logan
(FL)
904-488-0190
Kelsey Helton
(FL)
904-488-0190 | | | | | 4 | Brown Wood Preserving,
FL (04/08/88) | Land treatment | Wood
preserving,
Drum storage/
disposal | Soil (7,500
cy) | PAHs (Creosote) | Completed (see Table 4) | PRP lead/Federal
oversight;
Remediation
Technologies,
Inc. | Martha Berry
404-347-2643
FTS-257-2643 | | | | | 4 | Cabot Carbon/Koppers,
FL (09/27/90)
See also In Situ
Bioremediation, Soil
Washing | Slurry phase
(Bioremediation of
fines following
soil washing) | Wood
preserving;
Pine tar and
turpentine
manufacturing | Soil (fines
from washing;
approximately
6,400 cy) | SVOCs (PCP, Bis
(2-ethyl-
hexyl)phthalate,
Dimethylphenol,
DNT), PAHs | In design; Design
completion planned Spring
1994 | PRP lead/Federal
oversight | Martha Berry
404-347-2643
FTS-347-2643 | | | | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### **Bioremediation (Ex Situ)** | Region | Site Name, State (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contects/
Phone | |--------|--|---|--|--|---|--|--|---| | 4 | Dubose Oil Products, FL
(03/29/90) | Solid phase
(Windrowing with
aeration and
irrigation in a
barn) | Petroleum
refining and
reuse | Soil (15,000
cy) | SVOCs (PCP), PAHS | In design; Design
completion planned Winter
1992; Pilot- scale work
to begin in Summer 1992;
This will be Phase 1 of
RA | PRP lead/Federal
oversight | Mike McKibben
404-347-2643
FTS-257-2643
Joe Wheatley
(FL)
904-488-0190 | | 4 | Southeastern Wood
Preserving, MS
Emergency Response
Action Memo signed
09/30/90
See also Soil Washing | Slurry phase
(preceded by soil
washing) | Wood
preserving | Soil (fines
from 8,000 cy
of soil) | SVOCs (PCP), PAHs
(Creosote) | Operational; Completion
planned Summer 1993 | Federal lead/Fund
financed; OHM
Remediation
Services Corp | Don Rieger
404-347-3931
FTS-257-3931 | | 4 | Cape Fear Wood
Preserving,* NC
(06/30/89)
See also Soil Washing | Slurry phase
(preceded by soil
washing) | Wood
preserving | Soil (2,000 cy
of fines from
20,000 cy of
soil) | VOCs, PAHS | Design completed but not installed; Construction contract being procured; Construction will begin this summer | State lead/Fund
financed | Jon Bornholm
404-347-7791
FTS-257-7791 | | 4 | Charles Macon Lagoon,
NC (09/30/91) | Ex Situ
Bioremediation
(Type to be
determined) | Petroleum
refining and
reuse | Soil (1,000
cy) | PAHs (Benzo(a)-
anthracene,
Benzo(a)pyrene) | Predesign; PD completion
planned Fall 1992 | PRP lead/federal
oversight | Jack Butler
919-733-2801 | | 5 | Galesburg/Koppers, IL
(06/30/89) | Land treatment | Wood
preserving | Soil (15,200
cy) | SVOCs (PCP,
Creosote,
Phenols), PAHs | In design; Design
completion planned fall
1993 | PRP lead/Federal
oversight;
Remediation
Technologies,
Inc. | Brad Bradley
312-886-4742
FTS-886-4742
Steve Davis
217-785-3913 | | 5 | Cliff/Dow Dump, MI
(09/27/89)
See also Bioremediation
(In Situ) | Bioremediation (Ex
Situ) (Type to be
determined) | Waste disposal
for charcoal
manufacturing
plant | Soil (9,200
cy) | VOCs (TCE, BTEX),
SVOCs (Phenol,
Naphthalene) | Predesign; PD completion
planned 1992; Design to
be completed in Winter
1993; | PRP lead/Federal
oversight | Lida Tan
312-886-1842
FTS-886-1842 | | | Burlington Northern
Railroad Tie Treating
Plant,* MN (06/04/86) | Land treatment | Wood
preserving | Soil (9,500
cy), Sludge
(9,600 cy) | SVOCs (Phenols),
PAHs | Operational; Completion
planned 1994 | PRP lead/State-
federal
oversight;
Remediation
Technologies,
Inc. | Tony Rutter
312-886-8961
FTS-886-8961
Fred Jenness
(MN)
612-297-8470
Richard Truex
(RETEC)
303-493-3700 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. ### Bioremediation (Ex Situ) (continued) | Region | Site Name, State (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Conteminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|---|------------------------------------|---|--|--|---|---| | 5 | Joslyn Manufacturing
and Supply Co., MN
(Project began in 1988) | Land treatment
(Unlined treatment
unit with
irrigation and
tilling) | Wood
preserving | Soil (75,000
cy) | SVOCs (PCP), PAHs | Operational; Completion
planned Fall 1992;
Operations began in 8/89 | PRP lead/State
oversight; ECOVA
Corporation | Kevin Turner
312-886-4444
FTS-886-4444
Steve Schoff
(MN)
612-296-7827 | | 5 | Moss-American,* WI
(09/27/90)
See also Soil Washing | Slurry phase
(preceded by soil
washing) | Wood
preserving | Soil (80,000
cy of fines),
Sediments
(5,200 cy) | PAHs | In design; Design completion planned 1994 | PRP lead/federal
oversight;
Weston, Inc. | Betty Lavis
312-886-4784
FTS-886-4784 | | 6 | Old Inger Oil
Refinery,* LA
(09/25/84) | Land treatment | Petroleum
refining ànd
reuse | Soil (120,000
cy, combined),
Sludge | VOCs (Benzene,
Ethylbenzene),
PAHs (Petroleum
Hydrocarbons) | Operational; Completion planned Spring 1997 | State lead/Fund
financed;
Westinghouse
Haztech
(installation);
Operation to be
awarded Spring
1992 | Paul Sieminski
214-655-6710
FTS-255-6710
Mike Hahn (LA)
504-765-0487 | | 6 | North Cavalcade
Street,* TX (06/28/88) | Land treatment | Wood
preserving | Soil
(22,300
cy) | VOCs (BTEX), PAHs
(Creosote) | In design; Design
completion planned Fall
1992 | State lead/Fund
financed | Deborah
Griswold
214-655-6715
FTS-255-6715
Lewis Rogers
(TX)
512-463-8188 | | 6 | Sheridan Disposal
Services,* TX
(12/29/88) | Sturry phase | Industrial
landfill | Słudge (3,000
cy of oils and
sludge),
Solids (40,000
cy of soils
and sludgelike
material) | VOCs (Benzene,
Toluene), SVOCs
(Phenols), PCBs | Predesign; PD completion
planned Summer 1992 | PRP lead/State
oversight | Ruth Israelf
214-655-6735
FIS-255-6735 | | 7 | Vogel Paint & Wax,* IA
(09/25/89) | Land treatment | Paint/ink
formation | Soil (10,000
cy) | VOCs (Methyl Ethyl
Ketone, BTX) | Being installed;
Installation completion
planned Spring 1992; One
cell has been
constructed. | PRP lead/State
oversight;
Geotech
Engineering and
Testing Services,
Inc. | Steve Jones
913-551-7755
FTS-276-7755
Bob Drustrup
(IA)
515-281-8900 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. ### Bioremediation (Ex Situ) | Region | Site Name, State (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|---|--|---|--|---|--|--| | 7 | Scott Lumber, MO
Emergency Response
(Action Memo signed
07/10/87) | Land treatment | Wood
preserving | soil (16,000
cy) | SVOCs (Phenols),
PAHs
(Benzo-(a)-pyrene) | Completed; Operational
11/87 to Fall 1991 | Federal lead/Fund
financed;
Remediation
Technologies,
Inc. | Bruce Morrison
913-551-5014
FTS-276-5014 | | 8 | Burlington Northern
(Somers Plant),* MT
(09/27/89)
See also Bioremediation
(In Situ) | Land treatment | Wood
preserving | soil (12,000
cy) | PAHs (Creosote) | In design; Design
completion planned Fall
1992 | PRP lead/federal
oversight;
Remediation
Technologies,
Inc. | Jim Harris
406-449-5414
FTS-585-5414 | | 8 | Libby Ground Water
Contamination,* MT
(12/30/88)
See also Bioremediation
In Situ | Land treatment
using two 1-acre
cells; soil is
excavated and mixed | Wood
preserving | Soil (45,000
cy) | VOCs (Benzene),
SVOCs (PCP), PAHs
(Creosote) | Operational; Completion
planned 1999 | PRP lead/Federal
oversight | Jim Herris
406-449-5414
FTS-585-5414
Bert Bledsoe
(RSKERL)
405-332-2313
FTS-743-2313 | | 8 | Wasatch Chemical,* UT
(03/29/91)
See also In Situ
Vitrification | Land treatment on
an asphalt pad | Pesticide manufacturing/ use/storage, Other organic chemical manufacturing, Other inorganic chemical manufacturing | Soil (1,100
cy) | VOCs (Toluene,
Xylene) | Predesign; PD completion
planned Spring 1992 | PRP lead/Federal
oversight | Bert Garcia
303-293-1526
FTS-330-1526 | | 9 | J.H. Baxter,* CA
(09/27/90) | Land treatment
(bioremediation to
be followed by
fixation for
metals) | Wood
preserving | Soil (quantity
unknown) | Dioxins, PAHs | In design; Design
completion planned Summer
1993 | PRP lead/Federal
oversight | Mary Masters
415-744-2370
FTS-4840 | | 9 | Koppers Company, Inc.
(Oroville Plant), CA
(04/04/90)
See also Bioremediation
(In situ), Soil Washing | Slurry phase
(preceded by soil
washing) | Wood
preserving | Soil (fines
from 200,000
cy to be soil
washed) | SVOCs
(Polychlorinated
phenols),
Pesticides,
Dioxins | In design; Design
completion planned Spring
1993; This project is
being considered as part
of the soil washing
project | PRP lead/Federal
oversight | Fred
Schauffler
415-744-2365
FTS-484-2365 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### Bioremediation (In Situ) | | Bioremediation (in Situ) | | | | | | | | | | | |--------|---|---|--|---|---|---|--|---|--|--|--| | Region | Site Name, State, (ROO
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | | | | | 2 | FAA Technical Center,* NJ (09/26/89) See also Soil Vapor Extraction | In situ
bioremediation | Jet fuel tank
farm | gw (extraction
wells-30 to 40 ft
deep) | VOCs | Design complete;
Going to bid in
April for RA
contract award in
late summer | Federal facility,
FAA Lead | Carla Struble
212-264-4595
FIS-264-4595
Keith Buch (FAA)
609-484-6644 | | | | | 2 | Swope Oit & Chem Co.,
OU2, NJ (09/27/91)
See also Soil Vapor
Extraction | In situ soil
bioventing with
vacuum extraction | Chemical
reclamation | Soil (2 acres to
80 ft deep) | SVOCs
(Naphthalene,
DEHP,
2-ethylhexyl-
phalate) | Predesign; PD
completion planned
1992 | Still in
negotiation | Joseph Gawers
212-264-5386
FTS-264-5386 | | | | | 2 | Applied Environmental
Services, OU1, NY
(06/24/91)
See also Soil Vapor
Extractions) | In situ saturated
soil | Petroleum
refining and
reuse | Soil (quantity
unknown) | VOCs (TEX), SVOCs
(Naphthalene,
Bis(2-ethylhexyl)
phthalate,
Benzo(b)Fluoroan-
thene | Predesign, PD
completion planned
1992 | PRP lead/State
oversight | Andrew Anglish
(NY) 518-457-
5637 | | | | | 2 | Applied Environmental
Services, (Ground
Water), NY (06/24/91) | In situ ground water, treated gw to be reinjected w/nutrients and K ₂ O ₂ | Petroleum
refining and
reuse | ды | VOCs (TEX) | Predesign, PD
completion planned
1992 | PRP lead/State
oversight | Andrew Anglish
(NY)
518-457-5637 | | | | | 3 | LA Clarke & Sons, OU 1
(Soils),* VA (03/31/88)
See also In Situ
Flushing | In situ
bioremediation
follows creosote
recovery and in
situ flushing | Wood
preserving | Soil (15,000 cy,
maximum depth 8 -
10 ft) | VOCs (Benzene),
PAHs (Creosote,
Carcinogenic) | Predesign; PD
completion planned
Summer 1993 | PRP lead/Federal
oversight | Eugene Wingert
215-597-1727
FTS-597-1727 | | | | | 4 | Cabot Carbon/Koppers,
FL (09/27/90)
See also Ex Situ
Bioremediation; Soil
Washing | In situ soil
treatment above/
below gw table by
nutrient addition | Wood
preserving;
Pine tar and
turpentine
manufacturing | Soil (5,000 cy) | SVOCs (PCP,
Bis(2-ethyl
hexyl)phthalate,
DNT,
Dimethylphenol),
PAHs | In design; Design
completion planned
Spring 1994 | PRP lead/Federal
oversight | Martha Berry
404-347-2643
FTS-257-2643 | | | | | 4 | Cabot Carbon/Koppers
(Ground water), FL
(09/27/90) | In situ ground
water treating
above/below gw
table by nutrient
addition | Wood
preserving;
Pine tar and
turpentine
manufacturing | ди | SVOCs (PCP, Bis(2-
ethylhexyl)
phthalate, DNT,
dimethylphenol),
PAH | In design; Design
completion planned
Spring 1994 | PRP lead/Federal
oversight | Martha Berry
404-347-2643
FTS-256-2643 | | | | | 5 | Seymour Recycling,* IN
(09/30/87)
See also Soil Vapor
Extraction | In situ soil
Nutrients plowed
into soil | Chemical waste
management and
incineration | Soil
(approximately
200,000 cy, 12
acres to 10 ft
deep) | VOCs (BTEX),
SVOCs, PAHs
(Petroleum
Hydrocarbons) | Completed (see Table
4); Nutrients were
plowed into the soil
during Summer, 1990 | PRP lead/Federal
oversight;
Geraghty & Miller | Jeff Gore
312-886-6552
FTS-886-6552 | | | | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### Bioremediation (In situ) | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|--|--|--|--|--
--|--|--| | 5 | Seymour Recycling
(Ground water), IN
(09/30/87) | In situ gw
treatment
incidental to soil
treatment | Chemical Waste
management and
incineration | gw (under approx.
12 acres) | VOCS, SVOCS, PNAS | Operational; Gw
treatment was not
designed but appears
to be occuring as a
result of in situ
soil treatment | PRP lead/Federal
oversight | Jeff Gore
312-886-6552
FTS-886-6552 | | 5 | Cliff/Dow Dump, MI
(09/27/89)
See also Ex Situ
Bioremediation | In situ gw without
addition of
nutrients, oxygen,
or microbes | Waste disposal
for charcoal
manufacturing
plant | ды | VOCs (BTEX), SVOCs
(Phenol), PAHs | Predesign; PD
completion planned
1992; Design to be
completed Winter
1993 | PRP lead/Federal
oversight | Lida Tan
312-886-1842
FTS-886-1842 | | 5 | Allied Chemical &
Ironton Coke, OU2,* OH
(12/28/90) | In situ
bioremediation of
lagoon sediments | Coke
manufacturing | Sediments
(457,000 cy from
a lagoon) | PAHs | Predesign; PD
completion planned
Winter 1993 | PRP lead/Federal
oversight; IT
Corporation | Jim Van der
Kloot
312-353-9309
FTS-353-9309 | | 5 | Onalaska Municipal
Landfill, WI (08/14/90) | In situ soil; Air
injection; no
nutrient or microbe
addition | Municipal
landfill | Soil (16,000 cy,
11 - 15 ft deep) | SVOCs
(Naphthalene),
PAHs | In design; Design
completion planned
Fall 1992 | Federal lead/Fund
financed | Kevin Adler
312-886-7078
FTS-886-7078 | | 6 | Atchison/Santa
Fe/Clovis,* NM
(09/23/88) | In situ soil;
landfarm sludges
and cap | Railyard
wastes (diesel
spills) | Soil (28,600 cy,
combined, to 6 ft
deep), Sludge | PAHs (Petroleum
Hydrocarbons,
Diesel Fuel) | Being installed;
Completion planned
Spring 1992 | PRP lead/State
oversight; Radian
Corporation | Susan Webster
214-655-6730
FTS-255-6730 | | 6 | French Limited, TX
(03/24/88) | In situ lagoon
bioremediation | Petrochemical | Sludge (70,100 cy
combined),
Sediments | VOCs, PAHs | In design | PRP lead/Federal
oversight | Judith Black
214-655-6735
FTS-255-6735 | | 7 | Fairfield Coal and Gas,
IA (9/21/90) | In situ sludge;
Injection H ₂ O ₂ ,
nutrients &
effluent from gw
treatment | Coal
gasification | Sludge (Coal tars
at 22 - 27 ft
deep) | VOCs (BTEX), PAHs
(Naphthalene) | In design; Design
completion planned
Summer 1994; Field
scale pilot test
underway now,
complete in January,
1994 | PRP lead/Federal
oversight | Steve Jones
913-551-7755
FTS-276-7755 | | 7 | People's Natural Gas,
IA (9/16/91) | In situ gw | Coal
gasification | ды | VOCs (Benzene),
PAHs | Predesign; PD
completion planned
Winter 1992 | PRP lead/Federal
oversight | Bill Bunn
913-551-7792
FTS-276-7792 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### Bioremediation (In situ) (continued) | | | | | <u> </u> | | | | | |--------|--|--|--|---|---|--|--|--| | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | | 8 | Burlington Northern
(Somers Plant),* MI
(09/27/89) See also
Bioremediation (Ex
situ) | In situ g⊭ | Wood
preserving | gw (2 areas, 20
ft deep and 30 ft
deep) | SVOCs (Phenols),
PAHs (Creosote) | In design; Design
completion planned
Fall 1992 | PRP lead/Federal
oversight;
Remediation
Technologies,
Inc. | Jim Herris
406-449-5414
FTS-585-5414 | | 8 | Libby Ground Water
Contamination,* MT
(12/30/88)
See also Bioremediation
(Ex situ) | In situ ground
water; Injection of
H ₂ O ₂ and Potassium
tripolyphosphate | Wood
preserving | gw (targeting 40
- 80 ft deep) | VOCs (Benzene),
SVOCs (PCP), PAHs
(Creosote) | Operational,
Completion planned
2001; RA started
September 1991 | PRP lead/Federal
oversight;
Woodward-Clyde | Jim Harris
406-449-5414
FTS-585-5414
Bert Bledsoe
(RSKERL)
405-332-2313
FTS-743-2313 | | 9 | Gila River Indian
Reservation, AZ
Emergency Response
(Action Memo signed
07/31/84); See also
Chemical Treatment | In situ soil;
preceded by
chemical treatment | Drum storage /
disposal;
Airfield with
buried drums | Soil (3,200 cy) | Pesticides
(Toxaphene, Ethyl
and Methyl
Parathion) | Completed;
Operational 6/85 -
10/85 (see Table 4) | Federal lead/
Fund financed | Richard Martin
414-744-2288
FTS-484-2288 | | 9 | Castle Air Force Base,
OU 1, CA (09/30/91) | In situ ground water, treated gw to be reinjected with nutrients and H ₂ O ₂ | Federal
facility | g₩ | VOCs (TCE, PCE,
DCE, DCA, Carbon
tetrachloride,
Benzene) | in design | Federal facility,
U.S. Air Force
lead | Michael Work
415-744-2392
FTS-484-2392 | | 9 | Koppers Company, Inc.
(Oroville Plant), CA
(O4/04/90)
See also Soil Washing;
Bioremediation (Ex
Situ) | In situ soil;
surface application
of nutrients &
electron donors,
recirculate | Wood
preserving | Soil (110,000 cy,
to a depth of 10
ft) | SVOCs (Polychlori-
nated phenols),
Pesticides,
Dioxins | In design; Design
completion planned
Spring 1993 | PRP lead/Federal
oversight | Fred Schauffler
415-744-2365
FTS-484-2365 | | 9 | Roseville Drums, CA
Emergency Response
(Action Memo signed
03/03/88) | In situ soil | Midnight dump
on dirt road | Soil (14 cy) | VOCs, SVOCs
(Dichlorobenzene,
Phenols) | Completed;
Operational 2/88 to
11/88 (see Table 4) | Federal lead/Fund
Financed | Brad Shipley
415-744-2287
FTS-484-2287 | | 9 | Poly-Carb, NV
Emergency Response
(Action Memo signed
05/14/87); See also In
Situ Flushing | In situ soil,
nutrients plowed
into soil | Commercial
waste
management | Soil (1,500 cy) | SVOCs (Phenols),
PAHs (Cresol) | Completed;
Operational from
7/87 to 8/88 (see
Table 4) | Federal lead/fund
financed; Reidel
Environmental
Services | Bob Mandel
415-744-2290
FTS-484-2290 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### **Chemical Treatment** . | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|--|--|--|---|---|--|---|--| | 3 | Avtex Fibers, VA
Emergency Response
(Action Memo signed
11/14/89) | Chemical treatment | Rayon
manufacturing
facility
waste-water
treatment | Sludge (39,000
gallons) | Carbon Disulfide | Completed in 8/91 (see
Table 4) | Federal lead/Fund
financed; OH
Materials | Vincent Zenone
215-597-3038
FTS-597-3038 | | 4 | Palmetto Wood
Preserving,* SC
(09/30/87) | Reduction of Cr(6)
to Cr(3) using Na
metaphosphate | Wood
preserving | Soil (12,700
cy) | Metals (Chromium,
Arsenic, Copper) | Completed; Operational
9/88 to 2/89 (see
Table 4) | Federal lead/Fund
financed; Roy F.
Weston | Al Cherry
404-342-7791
FTS-257-7791 | | 5 | PBM Enterprises (Van
Dusen Airport Service),
MI
Emergency Response
(Action Memo signed
(04/10/88) | Oxidation with
Sodium Hypochlorite | Silver
Recovery
Facility | Solids
(Cyanide-
tainted x-ray
film chips) | Organic Cyanides | Completed; Operational
5/85 to 10/85 (see
Table 4) | Federal lead/Fund
financed; American
Environmental
Service, Inc. | Ross Powers
312-378-7661
FTS-378-7661 | | 9 | Gila River Indian
Reservation, A2
Emergency Response
(Action Memo signed
07/31/84)
See also Bioremediation
(In situ) | In situ | Drum storage /
disposal
Airfield with
buried drums | Soil (3,200
cy) | Pesticides
(Toxaphene, Ethyl
and Methyl
Parathion) | Completed; Operational
4/85 to 10/85 (see
Table 4) | Federal lead/Fund
financed | Richard Martin
414-744-2288
FTS-484-2288 | | 9 | Stanford Pesticide #1,
AZ
Emergency Response
(Action Memo signed
04/20/87) | In situ | Pesticide manufacturing / use / storageFarm Equipment Storage | Soil (200) | Pesticides
(Methyl
Parathion) | Completed; Operational
7/87 to 9/87
(see
Table 4) | Federal lead/Fund
financed; Crosby
and Overton | Den Shane
415-744-2286
FTS-484-2286 | [#] Status as of February 1992. Indicates that a treatability study has been completed. #### Dechlorination | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status " | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|---|--|--|--|--|---|--| | 1 | Re-Solve,* MA
(09/24/87)
See also Thermal
Desorption | Dechlorination of
residuals from
thermal desorption | Chemical
reclamation
facility | Soil
(residuals
from 22,500
cy) | PCBs | Predesign; PD completion
planned Spring 1992;
Treatability study to be
completed Spring 1992;
Design completion planned
Summer 1993 | PRP lead/Federal
oversight;
Chemical Waste
Management, Inc. | Lorenzo Thantu
617-223-5500
FTS-883-1500 | | 2 | Myers Property, NJ
(09/28/90)
See also Soil Washing | Dechlorination | Pesticide
manufacturing/
use/storage | Soil (50,000
cy combined),
Sediments | SVOCs
(hexachlorobenzene,
Pesticides (DDI,
DDE, DDD), Dioxins | Predesign; PD completion
planned Summer 1992 as
soon as Consent Decree
approved | PRP lead/Federal
oversight | John Prince
212-264-1213
FTS-264-1213 | | | Signo Trading/Mt.
Vernon, NY
Emergency Response
(Action Memo signed
12/19/86) | Dechlorination | Waste
Management
Facility
Warehouse | Sludge (15
gallons) | Dioxins (2,3,7,8-
TCOD-Laden
Herbicides) | Completed; Operational
10/20/87 (see Table 4) | federal
lead/Fund
financed; Galson
Research Corp.
(subcontractor
to OHM) | Charles
Fitzsimmons
201-321-6608
FTS-340-6608 | | 2 | Wide Beach Development,
NY (09/30/85) | Dechlorination with
APEG | Contaminated
road dust,
driveways,
ditches | Soil (40,000
cy) | PCBs . | Completed; Operational
10/90 to 6/91 (see Table
4) | Federal
lead/Fund
financed;
Soiltech Inc.
(subcontractor
to Kimmins) | Herb King
212-264-1129
FTS-264-1129 | | 3 | Saunders Supply Co,
OU1, VA (09/30/91)
See also Thermal
Desorption | Dechlorination | Wood
preserving | Studge (700
cy) | Dioxins (TCDD
equivalents) | Predesign, PD completion
planned Spring 1992 | Federal
lead/fund
financed | Andy Palestini
215-597-1286
FTS-597-1286 | | 4 | Smith's Farm Brooks,*
KY (09/30/91) | Dechlorination | Drum storage/
disposal | Soil (16,000
cy) | PCBs, PAHs
(Carcinogenic) | In design; Design
completion planned Spring
1992 | PRP lead/Federal
oversight | Tony DeAngelo
404-347-7791
FTS-257-7791 | | 4 | Arlington Blending & Packaging Co., OU1*, TN (06/28/91) See also Thermal Desorption | Dechlorination of
residuals from
thermal desorption | Pesticide manufacturing/ use/storage, Other organic chemical manufacturing | Liquid
(Residuals
from thermal
desorption) | VOCs (DCE), SVOCs
(PCP), Pesticides
(Chlordane,
heptaclor) | Predesign, PD completion
planned Winter 1992 | PRP lead/Federal
oversight | Derek Matory
404-347-7791
FTS-257-7791 | | 6 | Fruitland Drum, NM
Emergency Response
(Action Memo signed
09/08/90) | Dechlorination with
BCD | Operation/
maintenance
facility, site
not on NPL | Liquids (3
drums of waste
product, 150
gallons) | VOCs, Pesticides,
Dioxins (2,4,5,1),
PAHs | In planning stage,
schedule uncertain | Federal
lead/Fund
financed | Craig Carlton
214-655-2270
FTS-255-2270 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. # Dechlorination (continued) | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|-----------------------------|---|---|-------------------------------|--|--|--| | 6 | Tenth Street
Dump/Junkyard,* OK
(09/27/90) | Dechlorination | Salvage and
industrial
waste dump | Soil (10,000
cy) | PCBs | In design; Remedy is
being reevaluated due to
results of RD, there is
too much debris | Federal
lead/Fund
financed | Noel Bennett
214-655-6715
FTS-255-6715 | | 6 | Sol Lynn/Industrial
Transformers,* TX
(03/25/88) | Dechlorination with
APEG | Transformer
and solvent
recycler | Soil (800 cy),
Sludge ((oil)
400 gallons) | PCBs | Operational; Remedy one quarter done but being rethought as the technology is not effective for this waste, soil has a lot of clay | PRP lead/Federal
oversight;
Galson Research
(sub-contractor
to ENSR
Consulting) | John Meyer
214-655-6735
FTS-255-6735 | | 7 | Crown Plating, NO
Emergency Response
(Action Memo signed
08/29/89) | Dechlorination | Electroplating | Liquid (5
gallons) | Pesticides (Silvex; 2,4,5 TP) | Completed; Operational
10/89 to 12/89 (see Table
4) | Federal
lead/Fund
financed | Mark Roberts
913-236-3881
FTS-757-3881 | [#] Status as of February 1992. Indicates that a treatability study has been completed. #### In Situ Flushing | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status " | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | | | |--------|---|---|--|---|---|---|--|--|--|--| | 2 | Liperi Lendfill,* NJ
(09/30/85) | Soil flushing
Flushing of area
Within the slurry
Wall, including
Soil and Wastes | Industrial
landfill,
Municipal
landfill | Soil (650,000
cy, 16 acres
to 15 ft deep) | VOCs (Bis-2-chloro- ethylether, DCA, dichloromethane), SVOCs (Phenol), Metals (Chromium, Lead, Nickel, Mercury) | Operational; Completion
planned 1999 | State lead/Fund
financed;
Bechtel
Environmental,
Inc. | Fred Cataneo
212-264-9542
FTS-264-9542 | | | | 2 | Naval Air Engineering
Center, OU1, NJ
(02/04/91) | Soil Flushing (reinject treated gw through trenches (winter) & spray irrigation (summer) with capture downgradient) | Federal
Facility | Soil
(approximately
2 acres, to 4
feet deep) | VOCs | Operational, Completion
planned Summer 1995.
Reinjection will
continue for 3 years
and be evaluated. | Federal facility
U.S. Navy lead;
Moretrench
Environmental | Jeff Gratz
212-264-6667
FTS-264-6667 | | | | 2 | Naval Air Engineering
Center, OU2, NJ
(O2/O4/91) | Soil flushing
(reinject treated
gw through trenches
(winter) & spray
irrigation (summer)
with capture
downgradient) | Federal
Facility | Soil (2 acres,
to 4 feet
deep) | VOCs | Being installed, to be
finished Fall 1992.
This technology will be
applied for three years
and evaluated. | Federal facility
U.S. Navy lead;
Moretrench
Environmental | Jeff Gretz
212-264-6667
FTS-264-6667 | | | | 2 | Naval Air Engineering
Center, OU4, NJ
(02/04/91) | Soil Flushing (reinject treated gw through trenches (winter) & spray irrigation (summer) with capture downgradient) | Federal
Facility | Soil (2 acres,
up to 4 feet
deep) | VOCs | Being installed, to be
finished Fall 1992.
This technology will be
applied for three years
and evaluated. | Federal facility
U.S. Navy lead;
Moretrench
Environmental | Jeff Gratz
212-264-6667
FTS-264-6667 | | | | 2 | Vineland Chemical, OU1
and OU2, NJ (09/29/89)
See also Soil Washing | Soil flushing
Flushing lagoons
using treated gw | Pesticide
manufacturing/
use/storage | Soil (126,000
cy, to 15 ft
in sandy soil) | Metals (Arsenic) | In design; Design
completion planned
Spring 1993 | Federal
lead/fund
financed | Matthew
Westgate
212-264-3406
FTS-264-3406
Steve Hadel
(USACE-Kansas
City)
816-426-5221
FTS-867-5221 | | | [#] Status as of February 1992. Indicates that a treatability study has been completed. ### In Situ Flushing | Region | Site
Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|---|--|--|---|---|--|--| | 2 | Byron Barrel & Drum, NY
(09/29/89) | Soil flushing | Drum storage/
disposal | Soil (5,200
cy) | VOCs (TCE, DCE,
TCA), SVOCs
(Methyl Ethyl
Ketone), Metals
(Chromium, Lead) | Predesign; PD
completion planned
Spring 1992 | PRP lead/Federal
oversight | Eduardo
Gonzales
212-264-5714
FTS-264-5714 | | 3 | L.A. Clarke & Sons, OU1
(Soils),* VA (03/31/88)
See also,
Bioremediation In Situ | Soil flushing with
surfactants, after
creosote recovery
and before in situ
bioremediation | Wood
preserving | Soil (15,000
cy, maximum
depth 8 - 10
ft) | VOCs (Benzene),
PAHs (Creosote,
Carcinogenic) | Predesign; PD
completion planned Fall
1992 | PRP lead/Federal
oversight | Eugene Wingert
215-597-1727
FTS-597-1727 | | 3 | U.S. Titenium, VA
(11/21/89) | Dissolution of wastes (EPA is considering excavation and ex situ dissolution of wastes) | Titanium oxide
production
from ore
digested with
sulfuric acid | Soil (16,000
cy, to 25 ft
deep), Solids
(16,000 cy
ferrous
sulfate) | Inorganics
(Ferrous Sulfate) | Predesign; PD
completion planned
Summer 1992 | PRP lead/State
oversight | Darius
Ostrausuas
215-597-1727
FTS-597-1727
Tim Longe (VA)
804-225-3258 | | 4 | Ciba-Geigy Corp.
(MacIntosh Plant), AL
(09/30/91)
See also Thermal
Desorption | Soil flushing (to
be evaluated in
treatability study) | Pesticide
manufacturing/
use/storage | Soil (as
needed,
greater than
20 ft deep) | Pesticides | Predes i gn | PRP lead/Federal
oversight | Charles Kane
404-347-2643
FIS-257-2643 | | 4 | JADCO-Hughes, NC
(09/27/90)
See also Soil Vapor
Extraction | Soil flushing
(preceded by vacuum
extraction from
same ports) | Plastics
manufacturing,
Chemical
manufacturing,
Drum storage/
disposal,
Solvent
recycling | Soil (6,000
cy) | VOCs (TCE, Vinyl chloride, Carbon tet., Chloroform, BTX), SVOCs (Dichlorobenzene, Trichlorobenzene) | In design; Design
completion planned Fall
1992; The horizontal
wells used for SVE will
become ports for
flushing | PRP lead/Federal
oversight | Barbara Benoy
404-347-7791
FIS-257-7791
Bruce Wicholson
(NC)
919-733-2801 | | 5 | Ninth Avenue Dump, IN
(06/30/89) | Soil flushing | Industrial
landfill | Soil (64,000
cy, maximum
depth 30 ft) | VOCs (TCE, BTEX) | In design; Design
completion planned
Winter 1993 | PRP lead/Federal
oversight;
Fluor-Daniel | Bernard Schorle
312-886-4746
FTS-353-6417 | | 5 | Rasmussen Dump, M!
(03/28/91) | Soil flushing
(flushing part of
reinjection of
treated gw) | Industrial
landfill;
Paint/ink
formation | Soil (quantity
unknown, gw
table at 50
ft) | VOCs (Vinyl
chloride,
Benzene) | In design; Design
completion planned 1994 | State lead/FUND
financed | Ken Glatz
312-886-1434
FTS-886-1434 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. ## In Situ Flushing (continued) | Region | Site Name, State, (ROD
Date) | H -F | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|--|---|---|----------------------------------|---|---|---|--| | 6 | South Cavalcade
Street,* TX (09/26/88)
See also Soil Washing | Soil flushing with
the same
surfactants used
for the soils
treated with soil
washing | Wood
preserving | Soil (20,000
cy) | SVOCs
(Benzo(a)pyrene,
Benzo(a)anthracen
e, Chrysene),
PAHs | In design; Design
completion planned
Summer 1994 | PRP lead/Federal
oversight | Mark Fite
214-655-6715
FTS-255-6715 | | 7 | Lee Chemical, MO
(03/21/91) | Soil flushing | Solvent
manufacturer/
packing | Soil (from 10
to 20 ft deep) | VOCS (TCE, DCE,
PCE, TCA) | Predesign; PD
completion planned
Spring 1992 | PRP lead/State
oversight | Gene Gunn
913-551-7776
FTS-276-7776
Jim Kavanaugh
(MO)
314-751-4029 | | 9 | Poly-Carb, NV
Emergency Response
Action Memo signed
(05/14/87)
See also,
Bioremediation Ex Situ | Soil flushing
followed by In situ
bioremediation | Commercial
waste
management | Soil (1,500
cy) | SVOCs (Phenols),
PAHs (Cresol) | Completed; Operational
7/87 to 8/88 (see Table
4) | Federal
lead/Fund
financed; Reidel
Environmental
Services | Bob Mandet
415-744-2290
FTS-484-2290 | | 10 | Union Pacific Railroad
Sludge Pit, ID
(09/10/91) | Soil flushing | Railroad
operations,
cleaning, and
fueling | Soil (quantity
unknown) | PAHs (Petroleum
Hydrocarbons) | Predesign; PD
completion planned
Spring 1993 | PRP lead/Federal
oversight | Anne Williamson
206-553-2739
FTS-399-2739 | | 10 | United Chrome
Products,* OR
(09/12/86) | Soil flushing | Chrome plating
facility | Soil (quantity
not available) | Metals (Chromium) | Operational; Operations
began Summer 1988 | Federal
lead/Fund
financed;
CH2MHill and
subcontractors | Loren
McPhillips
206-553-4903
FTS-399-4903 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### In Situ Vitrification | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|--|--------------------------|---|---|--|---|--|--| | 5 | lonia City Landfill,*
MI (09/29 <u>/</u> 89) | In situ
vitrification | Municipal
landfill | Soil with
debris (5,000
cy, to 15 ft
deep) | VOCs (Methylene
chloride, TCA,
Styrene, Toluene),
Metals (Lead) | In design; Design
completion planned
Summer 1994 | PRP lead/Federal
oversight | Michael
Gifford
312-886-7257
FTS-886-7257 | | 5 | Parsons Chemical (ETM
Enterprise), MI
Emergency Response | In situ
vitrification | Agricultural
chemical
facility | Soil (2,000 cy) | Pesticides,
Dioxins, Metals
(Mercury) | Design completed but
not installed,
Completion planned
Summer 1993; Waste has
been staged; Treatment
postponed temporarily | Federal
lead/Fund
financed;
Geosafe Corp. | Len Zentack
312-886-4246
FTS-886-4246 | | 8 | Rocky Mountain Arsenal,
OU 16, CO (02/26/90) | In situ
vitrification | Federal
facility | Soil (4,600 cy,
to 10 ft deep),
Sludge (5,800
cy, to 10 ft
deep) | Pesticides, Metals
(Arsenic, Mercury) | In design; Design
completion planned
1993; On hold pending
reentry of vendor into
the market | Federal facility
U.S. Army lead | Connally Mears
303-293-1528
FTS-330-1528 | | 8 | Wasatch Chemical,* UT
(03/29/91)
See also,
Bioremediation Ex Situ | In situ
vitrification | Pesticide
manufacturing/
use/storage,
Chemical
manufacturing, | Soil (3,600 cy
combined, to 5
ft deep),
Sludge, Solids
(drain pipes,
etc.) | SVOCs
(Hexachlorobenzene,
PCP), Pesticides,
Dioxins | Predesign; PD
completion planned
Summer 1992 | PRP lead/Federal
oversight | Bert Garcia
303-293-1526
FTS-330-1526 | Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### **Soil Vapor Extraction** | | Oon vapor Extraction | | | | | | | | | | |--------|---|--|---|---
---|--|--|--|--|--| | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | | | | 1 | Kellogg-Deering Well
Field, CT (09/29/89) | Soil vapor
extraction | Solvent
recovery
facility,
Industry
cluster | Soil (quantity
not available) | VOCS (TCE, PCE, DCE,
TCA, DCA, Vinyl
Chloride, BTEX) | In design; Design
completion planned
Winter 1993 | PRP lead/federal
oversight; GZA
Geoenvironmental | Leslie
McVicker
617-573-9689
FTS-833-1689 | | | | 1 | Groveland Wells,* MA
(09/30/88) | Soil vapor
extraction | Manufacturing | Soil (19,000
cy to 25 - 30
ft deep) | VOCs (TCE, Methylene
Chloride, DCE) | In design; Design
completion planned
Fall 1992 | PRP lead/Federal
oversight; Terra
Vac, Inc. | Bob Leger
617-573-5734
FTS-883-1734 | | | | 1 | Silresim,* MA
(09/19/91) | Soil vapor
extraction | Chemical waste
reclamation | Soil (137 cy) | VOCs (TCE, TCA, Carbon
Tetrachloride,
Chloroform, Styrene) | Predesign; PD
completion planned
Summer 1992 | Still in
negotiations | Lestie
McVickar
617-573-9689
FTS-833-1689 | | | | 1 | Wells G&H, MA
(09/14/89) | Soil vapor
extraction with air
flushing | Inorganic/
organic
pigments, Drum
storage/
disposal | Soil (7,400
cy, to 3 ft
deep) | VOCs (PCE, TCE) | Predesign; PD
completion planned
Summer 1992 | PRP lead/Federal
oversight | Berbere
Newman
617-573-5736
FTS-833-1736 | | | | 1 | Mottolo Supply, NH
(03/29/91) | Soil vapor
extraction with
horizontal wells | Uncontrolled
waste site | Soil (3,400
cy) | VOCs (TCE, TCA, Vinyl
Chloride, DCA, DCE,
Toluene, Ethylbenzene) | Predesign; PD
completion planned
Spring 1992 | Still in
negotiation | Roger Duwart
617-573-9628
617-833-1628 | | | | 1 | South Municipal Water
Supply Well,* NH
(09/27/89)
See also Other
Technologies | Soil vapor
extraction (with
air sparging of gw) | Solvent
recovery
facility, Ball
bearing
manufacturing | Soil (7,500
cy) | VOCs (PCE, TCA, TCE) | In design; Design
completion planned
Summer 1992 | PRP lead/Federal
oversight | Roger Duwart
617-573-9628
FTS-833-1628 | | | | 1 | Tinkham Garage,* NH
(09/30/86) | Soil vapor
extraction | Industrial
landfill, Drum
storage/
disposal | Soil (9,000
cy) | VOCs (Chloroform, DCE,
Vinyl Chloride, Benzene) | In design; Design
completion planned
Spring 1992 | PRP lead/Federal
oversight; Terra
Vac, Inc. | Diana King
617-573-9676
FTS-833-1676 | | | | 1 | Stamina Mills, RI
(09/28/90) | Soil vapor
extraction | Textile
manufacturing | Soil (6,000
cy, to 12 ft
deep) | VOCs (DCE, TCE) | Predesign; PD
completion planned
Fall 1993 | PRP lead/federal
oversight | Neil Handler
617-573-9636
FTS-833-1636 | | | | 2 | A O Polymer, Soil
Treatment Phase, NJ
(06/28/91) | Soil vapor
extraction (vapors
to carbon
adsorption) | Polymer
manufacturing | Soil (7,500
cy, to 30 ft
deep) | VOCs (TCE, TCA,
Trichlorofluoromethane,
Toluene, Ethylbenzene),
SVOCs (Naphthalene,
4-Methylphenol) | Predesign; PD
completion planned
Summer 1992 | Still in
negotiation | Rich Puvogel
212-264-9836
FTS-264-9836 | | | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### **Soil Vapor Extraction** | | | ıri | ···· | ii | <u> </u> | <u></u> | | | |--------|--|--|--|--|---|---|--|--| | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | | 2 | FAA Technical Center,
NJ (09/26/89)
See also Bioremediation
In Situ | Soil vapor
extraction | Jet fuel tank
farm | Soil (2 acres,
10 to 12 ft
deep) | VOCs, SVOCs
(Chlorophenol, Phenol),
PAHs | Design complete,
going to bid in April
w/contract award in
late summer | Federal Facility
FFA Lead | Carla Struble
212-264-4595
FIS-264-4595
Keith Buch
(FAA)
609-484-6644 | | 2 | Gerden State Cleaners,
NJ (09/26/91) | Soil vapor
extraction | Dry cleaners | Soft (200 cy,
to 25 ft deep) | VOCs (PCE) | In design; Design
completion planned
Spring 1993 | Federal
lead/Fund
financed; USACE
project | Sharon
Acheson
212-264-1217
FTS-264-1217 | | 2 | South Jersey Clothing,
NY (09/26/91) | Soil vapor
extraction | Dry cleaners,
clothing
manufacturer | Soil (1,400
cy, to 25 ft
deep) | VOCs (TCE) | In design; Design
completion planned
Spring 1993 | Federal
lead/Fund
financed; USACE
project | Sharon
Acheson
212-264-1216
FTS-264-1217 | | 2 | Swope Oil & Chem Co.,
OU2, NJ (09/27/91)
See also Bioremediation
In Situ | Soil vapor
extraction with
bioventing | Chemical
reclamation | Soil (2 acres,
to a depth of
80 ft) | VOCs (TCE, PCE, Toluene,
Ethylbenzene, Xylene) | Predesign; PD
completion planned
1992 | Still in
negotiation | Joseph Gowers
212-264-5386
FTS-264-5386 | | 2 | Applied Environmental
Services, OU1, NY
(06/24/91)
See also Bioremediation
(In Situ) | Soil vapor
extraction | Petroleum
reuse | Soil (quantity
unknown) | VOCs, SVOCs | Predesign; PD
completion planned
1992 | PRP lead/State
oversight | Andrew
Anglish (NY)
518-457-5637 | | 2 | Circuitron Corporation,
OU1, NY (03/29/91) | Soil vapor
extraction | Electroplating | Soil (800 sq
ft to a depth
of 30 ft) | VOCs (TCA, PCE, TCE, DCA) | Predesign; PD
completion planned
Summer 1992 | Federal
lead/fund
financed | Miko Fayon
212-264-4706
FTS-264-4706 | | 2 | Genzale Plating
Company, OU1, NY
(03/29/91) | Soil vapor
extraction
(precedes
excavation for
solidification) | Electroplating | Soil (275 cy,
to a depth of
30 ft) | VOCs (TCE, TCA) | in design; Design
completion planned
Fall 1992 | Federal
lead/Fund
financed | Janet
Cappelli
212-264-8679
FTS-264-8679 | | 2 | Mattiace Petrochemicals
Company, CU1, NY
(06/27/91) | Soil vapor
extraction | Solvent
recycling
Organic
chemicals
blending | Soil (17,000
cy, to 40 ft
deep) | VOCs (PCE, TCE, Benzene,
Xylene) | Predesign; PD
completion planned
Spring 1992 | Federal
lead/Fund
financed | Edward Ats
212-264-0522
FTS-264-0522 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. ### **Soil Vapor Extraction** | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Conteminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|--|--|---|---|--|--|--|---| | 2 | SMS Instruments (Deer
Park), NY (09/29/89) | Soil vapor
extraction with
vapors to catalytic
combustor | Military
aircraft
component
overhauler | Soil (1,250 cy
to 25 ft deep) | VOCs (TCE,
Dichlorobenzene) | Being installed;
Completion planned
Spring 1992 | Federal
lead/fund
financed; Four
Seasons | Miko Fayon
212-264-4706
FTS-264-4706 | | 2 | Solvent Savers, NY
(09/30/90)
See also Thermal
Desorption | Soil vapor
extraction | Solvent and chemical reclamation facility | Soil (to 40 ft
deep) | VOCs (DCE, TCE) | Predesign; PD
completion planned
Summer 1992 | PRP lead/federal
oversight | Lisa Wong
212-264-0276
FTS-264-0276 | | 2 | Vestal Water Supply
1-1, NY (09/27/90) | Soil vapor
extraction | 2 acres within industrial park | Soil (both
areas = 25,000
cy, to 28 ft
deep) | VOCs (DCA, TCA, TCE, DCE) | Predesign; PD
completion planned
Spring 1992 | Area 2 - Fund
lead; Area 4 -
PRP lead | Ed Als
212-264-0522
FTS-264-0522 | | 2 | Upjohn Manufacturing
Co., PR (09/30/88) | Soil vapor
extraction | Industrial
facility,
chemical leak | Soil (quantity
not available) | VOCs (Carbon
Tetrachloride,
Acetonitrile) | Completed Operational
1984-1988 (see Table
4) | PRP lead/federal
oversight; Terra
Vac | Alison Hess
212-264-6040
FTS-264-6040 | | 3 | Bendix, PA (09/30/88) | Soil vapor
extraction with air
flushing | Aircraft
instrumenta-
tion manu-
facturing | Soil (33,000
cy, to 10 ft
deep) | VOCs (PCE,
TCE, Vinyl
Chloride) | Predesign; PD
completion planned
Summer 1992 | PRP lead/Federal
oversight | Humane Zfa
215-597-0913
FTS-597-0913 | | 3 | Cryochem, DU3, PA
(09/30/91) | Soil vapor -
extraction | Machine shops | Soil (70 cy,
up to 4 ft
deep) | VOCs (TCA, TCE, PCE, DCA) | In design; Design
completion planned
Winter 1992 | Federal
Lead/Fund
financed | Lisa Nichols
215-597-3216
FTS-597-3216 | | 3 | Henderson Road,* PA
(06/30/88) | Soil vapor
extraction with air
flushing (treating
unsaturated soil
and bedrock) | Injection well | Soil (20,000
sq ft, to 100
ft deep) | VOCs (DCA, TCA, Toluene) | Operational;
completion date
unknown | PRP lead/Federal
oversight; RT
Environmental
System | Michael Towle
215-597-8309
FTS-597-8309 | | 3 | Lord-Shope Landfill,*
PA (06/29/90) | Soil vapor
extraction (method
to be determined in
design) | Industrial
landfill | Soil (270,000
cy, to 30 ft
deep) | VOCs (PCE, TCE, Vinyl
Chloride, Alcohols,
n-Butanol), SVOCs
(Ketones) | In design; Design
completion planned
Winter 1993 | PRP lead/Federal
oversight | Jim Feeney
215-597-8257
FTS-597-8257 | | 3 | Tyson's Dump,* PA
(03/31/88) | Soil vapor
extraction with air
flushing (system
has been modified
during operations) | Industrial
landfill | Soil (30,000
cy with some
DNAPL,to 30 ft
deep) | VOCs (Benzene, Toluene,
Xylene), SVOCs
(Trichloropropane) | Operational;
completion date
unknown | PRP lead/Federal
oversight; Terra
Vac | Eugene Dennis
215-597-8555
FTS-597-8555 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. ## Soil Vapor Extraction | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Conteminents
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|--|--|---|---|--|--|---| | 3 | Arrowhead
Associates/Scovill,
OU1, VA (09/30/91) | Soil vapor
extraction with air
flushing | Electroplating | Soil (1,000
cy, depth
unknown) | VOCs (TCE, PCE) | Predesign; PD
completion planned
Fall 1992 | PRP lead/Federal
oversight | Phil Rotstein
215-597-9023
FTS-597-9023 | | 4 | Robins AFB, Landfill
and Sludge Lagoon, OU1,
GA (06/28/91) | Soil vapor
extraction | Federal
facility,
Sludge from an
industrial
wastewater
treatment
plant | Soil (15,000
cy, combined,
to B ft deep),
Sludge | VOCs (ICE, PCE, Vinyl
Chloride, Carbon
Tetrachloride) | Predesign; PD
completion planned
Summer 1992 | Federal
Facility, U.S.
Air Force lead | Roseanne Rudd
404-347-7791
FTS-257-7791 | | 4 | Charles Macon Lagoon,
OU1, NC (09/30/91) | Soil vapor
extraction w/air
flushing | Petroleum
refining and
reuse | Soil (1,300
cy) Sludge | VOCs (PCE) | Predesign; PD
completion planned
fall, 1992 | PRP lead/Federal
Oversight | Jack Butler
919-733-2801 | | 4 | JADCO-Hughes, NC
(09/27/90)
See also In Situ
Flushing | Soil vapor extraction with horizontal wells (followed by in situ flushing with same ports) | Plastics manufacturing, Other organic chemical manufacturing, Other inorganic chemical manufacturing, Drum storage/ disposal | Soil (6,000
cy) | VOCs (Carbon tet.,
Chloroform, Vinyl
Chloride, TCE, BTX),
SVOCs (Dichlorobenzene,
Trichlorobenzene) | In design; Design
completion planned
Fall 1992 | PRP lead/federal
oversight | Barbara Benoy
404-347-7791
FTS-257-7791
Bruce
Nicholson
(NC)
919-733-2801 | | 4 | Hinson Chemical, SC
Emergency Response
(Action Memo signed
11/28/88) | Soil vapor
extraction with air
flushing | Solvent
recycling | Soil (60,000
cy, to 50 ft
deep) | VOCs (DCA, TCE, PCE,
MEK, Benzene, Toluene) | Completed (see Table
4) | Federal
lead/Fund
financed, OHM
Corp. | Fred Stroud
404-347-3931
FTS-257-4464 | | 4 | Medley Farm, OU1, SC
(05/29/91) | Soil vapor
extraction | Other organic
chemical
manufacturing,
Rubber
manufacturing,
Drum storage/
disposal | Soil (50,000
cy, maximum
depth 60 ft) | VOCs (DCA, DCE, TCA,
Benzene, Toluene), SVOCs
(Phthalates) | Predesign; The design
is planned for
completion in Summer
1993. | PRP lead/Federal
oversight | Relph Howard
404-347-7791
FTS-257-7791
Richard
Haynes (SC)
803-734-5487 | [#] Status as of February 1992. Indicates that a treatability study has been completed. #### **Soil Vapor Extraction** (continued) | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|--|---|---|---|---|---|---| | 4 | SCRDI Bluff Road, SC
(09/12/90) | Soil vapor
extraction | Drum storage/
disposal,
Solvent
recovery
facility | Soil (45,000
cy, to 12 ft
deep) | VOCs (TCA, TCE, PCA,
PCE, DCA, DCE, BTEX),
SVOCs (Chlorobenzene,
Methyl Ethyl Ketone) | In design; Design
completion planned
Fall 1992 | PRP lead/federal
oversight | Steve Sendler
404-347-7791
FTS-257-7791 | | 5 | Acme Solvent
Reclaiming, Inc., OU2,
IL (12/31/90)
See also Thermal
Desorption | Soil vapor
extraction with air
flushing | Industrial
landfill,
solvent
recycling | Soil (quentity
unknown) | VOCS (DCA, TCA, DCE,
TCE, PCE, Vinyl
Chloride, Benzene) | Predesign; PD
completion planned
Fall 1993 | PRP lead/Federal
oversight; Geo
Syntec | Dennis Dalga
312-886-5116
FTS-886-5116 | | 5 | Enviro. Conservation
and Chemical (ROD
Amendment), IN
(06/07/91) | Soil vapor
extraction with air
flushing | Industrial
landfill,
solvent
recyling | Soil (quantity
unknown) | VOCs (Toluene,
Ethylbenzene, Xylene),
SVOCs (Dichlorobenzene,
Phenol), Organics (BNAs) | Predesign | PRP lead/Federal
oversight | Karen Vendl
312-886-4739
FTS-886-4739 | | 5 | Fisher Calo Chem, IN
(08/07/90) | Soil vapor
extraction | Solvent
recycling | Soil (29,500
cy) | VOCs (PCE, DCA, TCA) | In design; Design completion planned Fall 1993 | Federal
lead/Fund
financed | Brad Bradley
312-886-4742
FTS-886-4742 | | 5 | MIDCO 1, 1N (06/30/89) | Soil vapor
extraction | Industrial
landfill | Soil (10,000
cy, 4 - 8 feet
deep) | VOCs (TCE,
Dichloromethane,
Butanone, BTX), SVOCs
(Chiorobenzene,
Phenois), PAHs | Predesign; PRPs have
agreed to conduct
design; Consent
Decree will be
finalized in April
1992. | PRP lead/federal
oversight | Richard Boice
312-886-4740
FTS-886-4740 | | 5 | Main Street Well Field,
IN (03/29/91) | Soil vapor
extraction with air
flushing | Water supply
contamination
from many
sources | Soil (22,000
cy, to 10 ft
deep) | VOCs (TCE) | Predesign; PD
completion planned
Fall 1992; Consent
Decree is expected in
Fall 1992 | PRP lead/federal
oversight | Cindy Holan
312-886-0400
FTS-886-0400 | | 5 | Seymour Recycling,* IN
(09/30/87)
See also Bioremediation
In Situ | Soil vapor
extraction (No need
for emissions
treatment) | Chemical waste
management and
incineration | Soil
(approximately
200,000 cy, 12
acres to 10 ft
deep) | VOCs (TCA, Carbon tet.,
PCE, TCE, Vinyl
Chloride, Benzene) | Operation to begin in
April 1992;
Completion planned
Spring 1994; | PRP lead/Federal oversight; Canonie Engineering (installation), Geraghty & Miller (operation) | Jeff Gore
312-886-6552
FTS-886-6552 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. ## **Soil Vapor Extraction** | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|--|--|--|---
---|---|---| | 5 | Wayne Waste
Reclamation, IN
(03/30/90) | Soil vapor
extraction with air
flushing | Municipal
landfills, Oil
reclamation | Soil (300,000
cy, 10 acres
to 20 ft deep) | VOCs (TCE, DCE, Vinyl
Chloride, BTEX) | Predesign; PD
completion planned
Spring 1992 | PRP lead/Federal
oversight | Tinka Hyde
312-886-9296
FTS-886-9296 | | 5 | Chem Central, MI
(09/30/91) | Soil vapor
extraction | Chemical
packaging and
distribution | Soil (6,200 cy
to 8 ft deep) | VOCs (DCE, TCE, TCA,
BTEX), SVOCs
(Naphthalene, 2-Methyl
Naphthalene) | Predesign; PD
completion planned
Summer 1994 | PRP lead/Federal
oversight | Mike McAteer
312-886-4663
FTS-886-4663 | | 5 | Kysor Industrial,* M1
(09/29/89) | Soil vapor
extraction | Machine shops,
Truck parts
manufacturing | soil (13,200
cy) | VOCs (TCE, Xylene,
Toluene, Ethylbenzene) | In design; Design
completion planned
Summer 1993 | PRP lead/Federal
oversight | Mary L.
Gustafson
312-886-6144
FTS-886-6144 | | 5 | Springfield Township
Dump, MI (09/29/90) | Soil vapor
extraction with air
flushing | Industrial
landfill | Soil (100,000
cy) | VOCs (TCE, TCA,
Butanone, Toluene),
SVOCs (Chlorobenzene) | Predesign; PD
completion planned
Fall 1992 | PRP lead/F <mark>ederal</mark>
oversight | Mary Lou
Martin
312-353-6284
FTS-353-6284 | | 5 | Sturgis Municipal Well
Field, MI (09/30/91) | Soil vapor
extraction with air
flushing | Municipal
Water Supply | Soil (area and
depth unknown,
< 200 ft deep) | VOCs (TCE, PCE, TCA) | Predesign; PD
completion planned
1993 | Federal
lead/Fund
financed | Terese Van
Donsel
312-353-6564
FTS-353-6564 | | 5 | ThermoChem, Inc. OU1,
MI (09/30/91) | Soil vapor
extraction with air
flushing (may
include biological
enhancement) | Solvent
recycling | Soil (50,000
cy, 17 ft - 32
ft deep) | VOCs (PCE, TCE,
Ethylbenzene, Xylene) | Predesign; A schedule
is not included
because EPA is
negotiating with PRPs | In negotiations | Jae Lee
312-886-4749
FTS-886-4749 | | 5 | Verona Well Field
(Thomas Solvent/Raymond
Road),* MI (08/12/85) | Soil vapor
extraction
(attempted nitrogen
sparging) | Solvent
recycling | Soil (35,000
cy, 1/2 acre
to 18 ft deep) | VOCs (Dichloromethane,
Chloroform, Carbon Tet.,
DCA, TCA, BIEX, Vinyl
Chloride), SVOCs
(Napthalene) | Operational;
Completion planned
Spring 1992; Tried
nitrogen sparging to
improve removal above
gw; It increased
removal but at a very
high cost | Federal
lead/Fund
financed; Terra
Vac, Inc.
(subcontractor
to CH2M Hill) | Margaret
Guerriero
312-886-0399
FTS-886-0399 | | 5 | Verona Well Field, OU2,
MI (06/28/91) | Soil vapor
extraction (air
flushing is being
considered) | Machine shops,
Solvent
recycling | Soil (30,000
cy) | VOCs (PCE, TCA, Toluene) | Predesign; PD
completion planned
Spring 1993. | Federal
lead/Fund
financed | Margaret
Guerriero
312-886-0399
FTS-886-0399 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. ### **Soil Vapor Extraction** (continued) | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quentity) | Key Contaminants
Treated | Status " | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|--|--|---|---|---|--|--|---| | 5 | Long Prairie
Groundwater
Contamination, MN
(06/27/88) | Soil vapor
extraction followed
by GAC for off
gases | Dry cleaners | Soil (3,600
cy, to 15 ft
deep) | VOCs (DCE, PCE, TCE,
Vinyl Chloride) | Design completed but
not installed;
Cleanup contract
scheduled for award
shortly | State lead/Fund
financed | Jan Bartlett
312-886-5438
FIS-886-5438
Cindy
Kahrmann (MN)
612-296-7775 | | 5 | Miami County
Incinerator, OH
(06/30/89) | Soil vapor
extraction with air
flushing | Municipal
landfills,
Surface
impoundment | Soil (98,000
cy, combined),
Solids | VOCs (TCE, PCE, Toluene) | Predesign | PRP lead/federal
oversight | Anthony
Rutter
312-886-8961
FTS-886-8961 | | 5 | Pristine (Amendment),
OH (03/30/90) | Soil vapor
extraction with
horizontal wells | industrial
landfill, Drum
storage/
disposal | Soil (quantity
unknown, 4 -
12 ft deep) | VOCs (Chloroform, DCA,
PCE, TCE, Benzene),
SVOCs (Phenol) | In design; Design
completion planned
Summer 1993 | PRP lead/Federal
oversight;
Hydrogeo-Chem | Thomas Alcamo
312-886-7278
FTS-886-7278 | | 5 | Zanesville Well Field,
OH (09/30/91)
See also Soil Washing | Soil vapor
extraction with
horizontal wells | Municipal
Water Supply,
Auto parts
manufacturing | Soil (36,000
cy) | VOCs (TCE, DCE) | Predesign; PD
completion planned
Fall 1992; EPA is
negotiating with the
PRP; Consent Decree
expected in Fall 1992 | PRP lead/Federal
oversight | Dave Wilson
312-886-1476
FTS-886-1476 | | 5 | Hagen Farm, WI
(09/17/90) | Soil vapor
extraction | Industrial and
municipal
waste disposal | Soil (24,000
cy, to 18 ft
deep) | VOCs (Vinyl Chloride,
Butanone,
Tetrahydrofuran, BTEX) | In design; Design
completion planned
Winter 1992; Pilot
test scheduled for
February 1992 | PRP lead/federal
oversight | Jae Lee
312-886-4749
FTS-886-4749
Don Digiulio
(RSKERL)
405-332-8800
FTS-743-2011 | | 5 | Wausau Groundwater
Contamination, WI
(09/29/89) | Soil vapor
extraction | Machine shops,
Bulk chemical
distribution | Soil (1,300
cy) | VOCs (TCE, DCE, PCE) | In design; Design
completion planned
Summer 1992 | PRP lead/Federal
oversight;
Hydrogeo-Chem
(subcontractor
to
Conestoga-Rovers
& Associates) | Margaret
Guerriero
312-886-0399
FTS-886-0399 | | . 6 | South Valley, NM
(09/30/88) | Soil vapor
extraction | Aircraft
engine
manufacturing | Soil (to 20 ft
deep) | VOCs (PCE, TCE, DCE,
TCA) | Being installed;
Installation to be
completed Summer 1992 | PRP lead/Federal
oversight | Bill Luthers
214-655-6735
FTS-255-6735 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. ### **Soil Vapor Extraction** | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|--|--|--|--|---|--|--|--| | 6 | Tinker AFB (Soldier
Creek Bldg. 3001), OK
(08/16/90) | Soil vapor
extraction | Maintenance
facility for
aircraft | Soil (quantity
not available) | VOCs (BTEX) | In design; Design
completion planned
Fall 1992 | Federal
Facility, Air
Force lead | Susan Webster
214-655-6730
FTS-255-6730
Capt. Dan
Welch (USAF)
405-734-3058 | | 6 | Petro-Chemical Systems,
Inc., OU2, TX
(09/06/91)
See also Other
Technologies | Soil vapor
extraction with air
flushing and air
sparging (gw) | Petroleum
refining and
reuse | Soil (300,000
cy, to 30 ft
deep) | VOCs (BTEX), SVOCs
(Naphthalene), Metals
(Lead) | Predesign, PD
completion planned
Fall 1992 | PRP lead/federal
oversight | Chris
Villareal
214-655-6735
FTS-255-6735 | | 7 | Hastings GW
Contamination (Colorado
Ave),* NE (09/28/88) | Soil vapor
extraction
(considering heat
enhancement) | Industrial
metal
finishing/
cleaning | Soil (42,700
cy) | VOCs (PCE, TCE, DCE, TCA) | In design; Design
completion planned
Fall 1992 | PRP lead/federal
oversight | Darrel
Sommerhauser
913-551-7711
FIS-276-7711
Richard
Schlenker
(NE)
402-471-3388 | | 7 | Hastings GW
Contamination (Far-Mar
Co.),* NE (09/30/88) | Soil vapor
extraction | Former grain
storage area
(fumigants) | Soil
(targeting
layers at 35
ft and 110 ft) | VOCs (Carbon
Tetrachloride, Ethylene
Dibromide) | In design; Design
completion planned
Fall 1992; EPA is
negotiating the
Consent Decree for
remedial action | PRP lead/Federal
oversight | Susan
Hoff
913-551-7786
FTS-276-7786 | | 7 | Hastings GW
Contamination, Well No.
3,* NE (09/26/89) | Soit vapor
extraction | former grain
storage area
(fumigants) | Soil
(approximately
130,000 cy;
100 ft radius,
up to 110 ft
deep) | VOCs (Carbon
Tetrachloride,
Chloroform) | Being installed;
Installation to be
completed Summer 1992 | Federal
lead/Fund
financed;
Morrison Knudsen | Diane Easley
913-551-7797
FTS-276-7797
Steve Roe
(Morrison
Knudsen)
303-793-5054 | | 7 | Lindsay Manufacturing,
NE (09/28/90) | Soil vapor
extraction | Electroplating
galvanized
pipes for
irrigation
systems | Soil
(targeting
soil 25 - 40
ft deep) | VOCs (DCA, DCE, TCE,
PCE) | Predesign; PD
completion planned
Summer 1992; Consent
Decree not yet
finalized; schedule
is not yet set | PRP lead/Federal
oversight | Cecelia Tapla
913-551-7733
FTS-276-7733 | [#] Status as of February 1992. Indicates that a treatability study has been completed. # Soil Vapor Extraction (continued) | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|--|--|--|--|--|--|--| | 7 | Waverly Groundwater
Contamination, NE
(09/26/90) | Soil vapor
extraction | Grain storage
area
(fumigants) | Soil
(approximately
200,000 cy; 5
acres, 20 to
30 ft deep) | VOCs (Carbon
Tetrachloride,
Chloroform) | Operational;
Completion planned
2001; Project began
in February 1988 | Federal facility
USDA lead | Gene Gunn
913-551-7776
FTS-276-7776
Jim Hallett
(USDA)
202-690-0715
Mary Hansen
(Argonne
National Lab)
708-972-4938 | | 8 | Chemical Sales Company,
OU1,* CO (06/27/91) | Soil vapor
extraction with air
flushing (will
recirculate treated
emissions) | Chemical sales
and
distribution,
spillage at
tank farm | Soil (360,000
cy, to 35 ft
deep) | VOCs (PCE, TCE) | In design; Design
completion planned
Spring 1993 | PRP lead/Federal
oversight | Jim Berkley
303-293-1817
FTS-330-1817 | | 8 | Martin Marietta (Denver
Aerospace), CO
(09/24/90)
See also Thermal
Desorption | Soil vapor
extraction | Aerospace
equipment
manufacturer -
Bulk storage
facility and
industrial
landfill | Soil (less
than 1 acre,
depth unknown) | VOCS (TCE) | Predesign; PD
completion planned
Winter 1992 | State lead under
RCRA | George Dancik
303-293-1506
FTS-330-1506
Susan Chaki
303-331-4832 | | 8 | Rocky Mountain Arsenal,
(OU18), CO (02/26/90) | Soil vapor
extraction | Federal
facility | Soil (4,000 cy
at 20 ft and
45 ft) | VOCs (TCE) | In design; Design
completion planned
Fall 1992; Report
from pilot study due
March, 1992. | U.S. Army (PRP)
lead | Connally
Mears
303-293-1528
FTS-330-1528 | | 8 | Sand Creek Industrial
(OU1),* CO (09/29/89) | Soil vapor
extraction | Pesticide
manufacturing/
use/storage,
Refinery | soil
(>100,000) | VOCs (TCE, PCE,
Methylene Chloride,
Chloroform | In design; Design
completion planned
fall, 1993 | Federal
lead/Fund
financed; URS | Erna Acheson
303-294-1719
FTS-330-1719 | | 9 | Indian Bend Wash, South
Area, OU1, AZ
(09/12/91) | Soil vapor
extraction may vary
technology at
different
facilities within
area | Dry cleaners,
Electroplat-
ing, Indust-
rial landfill,
Municipal
landfills | Soil (meximum
depth - 90 ft) | VOCs (PCE, TCE, TCA) | Predesign | Mixed funding;
PRP lead/Federal
oversight | Jeff Dhont
415-744-2363
FTS-484-2363 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### **Soil Vapor Extraction** (continued) | | | 11 | 1 | ·· | | | | | |--------|---|--------------------------|--|---|--|--|--|---| | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | | 9 | Mesa Ground Water
Contamination, AZ
(09/30/91) | Vacuum Extraction | | Soil | VOCs | Predesign | Remedy to be
part of RCRA
corrective
action | Hillary Lauer
415-744-2369
FTS-484-2369 | | 9 | Motorola 52nd Street,
AZ (09/30/88) | Soil vapor
extraction | Manufacturing
facility | Soil (60 ft
redius to 25
ft depth) | VOCs (TCA, TCE, PCE,
Carbon Tetrachloride,
Ethylbenzene) | In design | PRP lead/State
oversight; Dames
and Moore | Mike
Montgomery
415-744-2394
FTS-484-2394
Jackie Maye
(AZ)
602-257-6899 | | 9 | Phoenix-Goodyear
Airport Area (North &
South Fac), AZ
(09/26/89) | Soil vapor
extraction | Defense-
related
manufacturing | Soil (North
1,200 cy,
South 270,000
cy, 60 ft
deep) | VOCs (TCE, TCA,, Methyl
ethyl ketone) | in design; Design
completion planned
Fall 1992 | PRP lead/Federal
oversight | Craig Cooper
415-744-2370
FIS-484-2370 | | 9 | Fairchild Semiconductor
(San Jose),* CA
(03/20/89) | Soil vapor
extraction | Semiconductor
manufacture | Soil (3,400
cy) | VOCs (TCA, Acetone, DCE,
PCE, Xylene) | Operational | PRP lead/State
oversight;
Canonie
Engineering | Helen
McKinley
415-744-2236
FTS-484-2236
Steve Morse
(CA)
415-464-0304 | | 9 | Fairchild
Semiconductor/MTV-1,*
CA (06/09/89) | Soil vapor
extraction | Semiconductor
manufacture
and metal
finisher | Soil (quantity
not available) | VOCs (TCE, PCE, Vinyl
Chloride, DCA, DCE,
Freon), SVOCs (Phenol) | In design; Design
completion planned
1993 | PRP lead/Federal
oversight | Pattie
Collins
415-744-2229
FTS-484-2229 | | 9 | Fairchild
Semiconductor/MTV-11,*
CA (06/30/89) | Soil vapor
extraction | Semiconductor
manufacturing
Metal
Finishing
Facility | Soil (quantity
not available) | VOCs (TCE, PCE, Vinyl
Chloride, DCA, DCE,
Freon), SVOCs (Phenol) | In design; Design
completion planned
1993 | PRP lead/federal
oversight | Pattie
Collins
415-744-2229
FTS-484-2229 | | 9 | IBM (San Jose),* CA
(12/15/88) | Soil vapor
extraction | Computer
manufacture | Soil (24,000) | VOCs (Xylenes, Acetone,
Freon, Isopropyl
Alcohol, TCA) | Operational; | PRP lead/State
oversight; Terra
Vac | Helen
McKinley
415-744-2236
FTS-484-2236
Steve Morse
(CA)
415-464-0304 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### **Soil Vapor Extraction** | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|--------------------------|---|----------------------------------|--|--|--|--| | 9 | Intel, Mountain View,*
CA (06/09/89) | Soil vapor
extraction | Semiconductor
manufacturing
Metal
Refinishing
Facility
Aircraft
Maintenance | Soil (quantity
not available) | VOCs (TCE, PCE, Vinyl
Chloride, DCA, DCE,
Freon), SVOCs (Phenol) | In design; Design
completion planned
1993 | PRP lead/Federal
oversight | Pattie
Collins
415-744-2229
FTS-484-2229 | | 9 | Intersit/Siemens, CA
(09/27/90) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (quantity
not available) | VOCs | Operational | State lead/Fund
financed;
Levine-Fricke | Marie Lacey
415-744-2234
FTS-484-2234
Steve Morse
(CA)
415-464-0304 | | 9 | Monolithic Memories, CA
(09/11/91) | Soil vapor
extraction | | Soil | VOCs | Predesign | | Helen
McKinley
415-744-2236
FTS-484-2236 | | 9 | National Semiconductor
and Advanced Micro
Device, CA (09/11/91) | Soil vapor
extraction | Semiconductor
manufacturing | Soil | VOCs (PCE, DCE, Toluene,
Xylene, Ethylbenzene),
SVOCs | Predesign | | Helen
McKinley
415-744-2236
FTS-484-2236 | | 9 | Raytheon,
Mountain
View,* CA (06/09/89) | Soil vapor
extraction | Semiconductor
manufacturing,
Metal
Refinishing
aircraft
maintenance | Soil (quantity
not available) | VOCs (TCE, PCE, Vinyl
Chloride, DCA, DCE,
Freon), SVOCs (Phenol) | In design; Design
completion planned
1993 | PRP lead/Federal
oversight | Pattie
Collins
415-744-2229
FTS-484-2229 | | 9 | Signetics (Advanced
Micro Devices), CA
(09/11/91) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (Quantity
unknown) | VOCS (TCE, DCE, DCA,
TCA) | Operational; Although
the ROD was signed in
FY 91, the PRP has
operated the remedy
for several years | PRP lead/State
oversight; M-Con
Associates | Joe Healy
415-744-2231
FTS-484-2231
Ron Jervasom
(CA)
510-464-0688 | | 9 | Solvent Service, CA
(09/27/90) | With heat
enhancement | Solvent
recycling | Soil | VOCs (TCA, Acetone,
Ethylbenzene, Xylene),
SVOCs (Dichlorobenzene) | Operational | State lead under
RCRA | Steve Morse
(CA)
415-464-0304 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### **Soil Vapor Extraction** | Region | Site Name, State, (ROO
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|--|---|---------------------------------------|-----------------------------|---|--|--| | 9 | Spectra Physics, OU1,
CA (03/22/91) | Soil vapor
extraction
With horizontal
wells | Semiconductor
manufacturing,
Laser
manufacturing | Soil (quantity
not available) | VOCs (TCE) | Being installed;
Completion planned
winter 1997 | PRP lead/State oversight | Sean Hogan
415-744-2233
FTS-484-2233 | | 9 | Teledyne
Semiconductors, CA
(03/22/91) | Soil vapor
extraction with
horizontal wells | Semiconductor
manufacturing
and lasor
components | Soil (quantity
not available) | VOCs (TCE) | Being installed;
Completion planned
Winter 1997 | PRP lead/State
oversight;
Levine-Fricke | Sean Hogan
415-744-2233
FTS-484-2233 | | 9 | Van Waters and Rogers,
CA (09/30/91) | Soil vapor
extraction | | Soil (quantity
unknown) | | Predesign | PRP lead/State
oversight | Marie Lacey
415-744-2234
FTS-484-2234 | | 9 | Watkins-Johnson,* CA
(06/29/90) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (quantity
not available) | VOCs (DCE, TCA, TCE) | In design; Completion
planned Spring 1993 | PRP lead/Federal
oversight | Elizabeth
Kelcher
415-744-2361
FTS-484-2361 | | 10 | Commencement Bay/S.
Tacoma Channel/Well
12A,* WA (06/01/87) | Soil vapor
extraction with air
flushing | Solvent
recycling | Soil (100,000
cy to 35 ft
deep) | VOCs (PCE, TCE, TCA) | Being installed;
Completion planned
Summer 1992 | Federal
lead/Fund
financed; AMD
Technologies,
Inc. | Kevin Rochlin
206-553-2106
FTS-399-2106 | [#] Status as of February 1992. Indicates that a treatability study has been completed. Soil Washing | | <u></u> | | | SOII WA | isining | | | | |-------------|--|---|--|--|---|---|---|---| | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status " | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | | 2 | Ewan Property,* NJ
(09/29/89)
See also Solvent
Extraction | Soil washing with
water only
(preceded by
solvent extraction) | Industrial
Waste dumping | Soil (22,000
cy) | Metals (Chromium,
Lead, Copper,
Barium) | Predesign; Stalled by
negotiations and access
problems | Still in
negotiation | Craig DeBiase
212-264-5393
FTS-264-5393 | | 2 | King of Prussia, NJ
(09/28/90) | Soil washing with
water with washing
agents as additives | Recycling
facility | Soil, Sludge,
Sediments
(20,000 cy,
combined) | Metals (Chromium,
Copper, Silver) | In design; Design
completion planned
Summer 1993 | PRP lead/Federal
oversight | Gary Adamkiewicz
212-264-7592
FTS-264-7592 | | 2 | Myers Property, NJ
(09/28/90)
See also Dechlorination | Soil washing preceded by dechlorination, may be followed by s/s | Pesticide
manufacturing/
use/storage | Soil, Sludge,
Sediments
(50,000 cy,
combined) | Metals (Aluminum,
Cadmium, Chromium,
Silver, Sodium) | Predesign; PD
completion planned
Summer 1992 when CD is
approved | PRP lead/Federal
oversight | John Prince
212-264-1213
FTS-264-1213 | | 2 | Vineland Chemical, OU1
and OU2, NJ (09/29/89)
See also In Situ
Flushing | Soil washing | Pesticide
manufacturing/
use/storage | Soil (62,000
cy of sandy
soil) | Metals (Arsenic) | In design; Design
completion planned
Spring 1993 | Federal lead/Fund
financed | Matthew Westgate
212-264-3406
FTS-264-3406
Steve Hadel
(USACE - Kansas
City)
816-426-5221
FTS-897-5221 | | 4 | American Creosote
Works,* FL (09/28/89)
See also,
Bioremediation Ex Situ | Soil washing with water with surfactants as additives (followed by slurry-phase bioremediation for fines) | Wood
preserving | Soil (36,500
cy) | SVOCs (PCP),
Dioxins, PAHs
(Creosote) | In design; Design
completion planned
Summer 1992; The design
will be a performance
spec | Federal lead/Fund
financed | Madolyn Streng
404-347-2643
FTS-257-2643
Charles Logan FL
904-488-0190
Kelsey Helton
904-488-0190 | | 4 | Cabot Carbon/Koppers,
FL (09/27/90)
See also,
Bioremediation, Ex
Situ, Bioremediation In
Situ | Soil washing
(followed by
bioremediation of
fines) | Wood
preserving;
Pine tar and
turpentine
manufacturing | Soil (6,400
cy) | SVOCs (PCP,
Bis(2-ethylhexyl)
phthalate, DNT,
Dimethylphenol),
PAHs, Metals
(Arsenic,
Chromium) | In design; Design
completion planned
Spring 1994 | PRP lead/Federal
oversight | Martha Berry
404-347-2643
FTS-257-2643 | | 4 | Southeastern Wood
Preserving, MS
Emergency Response
(Action Memo signed
09/30/90)
See also,
Bioremediation Ex Situ | Soil washing
(separation of
sands followed by
bioremediation of
fines) | Wood
preserving | Solids (8,000
cy of soils,
sludges, and
kiln ash) | SVOCs (PCP), PAHs
(Creosote) | Operational; Completion
planned Summer 1993 | Federal lead/fund
financed; OHM
Remediation
Services Corp. | Don Rigger
404-347-3931
FTS-257-3931 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### Soil Washing | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quentity) | Key Contaminants
Treated | Status f | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|--|--|---|---|--|--|--|---| | 4 | Cape Fear Wood
Preserving,* NC
(06/30/89)
See also,
Bioremediation Ex Situ | Water with sodium
hydroxide or
hydrochloric acid
to adjust pH as an
additive (followed
by slurry phase bio
and (possible) s/s
for metals) | Wood
preserving | Soil (20,000
cy) | VOCs (Benzene),
PAHs (Creosote),
Metals (Copper,
Chromium, Arsenic) | Design completed but
not installed;
Currently procuring
construction
contractor, Will begin
construction this
summer | Federal lead/Fund
financed | Jon Bornholm
404-347-7791
FTS-257-7791 | | 5 | United Scrap Lead/SIA,
OH (09/30/88) | Acid washing | Battery
recycling/
disposal | Soil (109,000
cy, combined),
Solids (55,000
cy of battery
casing chips),
Sediments | Metals (Lead) | In design; Design
completion planned
Spring 1993 | Federal lead/Fund
financed | Anita Boseman
312-886-6941
FTS-886-6941 | | 5 | Zanesville Well Field,
OH (09/30/91)
See also Soil Vapor
Extraction | Soil washing
(preceded by
vacuum
extraction) | Municipal
water supply;
Auto parts
manufacturing | Soil (1,800
cy) | Metals (Lead,
Mercury) | Predesign; PD
completion planned Fall
1992; Consent Decree is
expected in Fall 1992 | PRP lead/Federal
oversight | Dave Wilson
312-886-1476
FTS-886-1476 | | 5 | Moss-American,* WI
(09/27/90)
See also,
Bioremediation Ex Situ | Soil washing
(followed by slurry
phase bioremdiation
of fines) | Wood
preserving | Soil (80,000
cy) | PAHs | In design; Design
completion planned 1994 | PRP lead/Federal
oversight;
Weston, Inc. | Betty Lavis
312-886-4784
FTS-886-4784 | | 6 | Arkwood, AR (09/28/90) | Soit washing
(incineration of
residuals) | Wood
preserving | Soil (20,400
cy) | SVOCs (PCP),
Dioxins | Predesign | PRP lead/Federal
oversight | Rick Erhart
214-655-6582
FTS-255-6582 | | 6 | Koppers/Texarkana,* TX
(09/23/88) | Water with a
surfactant as an
additive (waste
water to be treated
and discharged) | Wood
preserving | Soil (19,400
cy) | PAHs
(Benzo(a)pyrene) | Predesign; Soil Washing
project is on hold, EPA
is considering
relocation of the
community | PRP lead/Federal
oversight | Ursula Lennox
214-655-6735
FTS-255-6735 | | 6 | South Cavalcade
Street,* TX (09/26/88)
See also In Situ
Flushing | Water with
surfactants as an
additive (followed
by incineration of
residuals) | Wood
preserving | Soil (11,000
cy) | SVOCs
(Benzo(a)pyrene,
Benzo(a)anthracene
, Chrysene), PAHs | In design; Design
completion planned
Summer 1994 | PRP lead/Federal
oversight | Mark Fite
214-655-6715
FTS-255-6715 | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### Soil Washing | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|--|---|--|----------------------|--|--|--|---| | 8 | Sand Creek Industrial
OU5,* CO (09/28/90) | Soil washing
(followed by
incineration of
contaminated
residuals) | Pesticide
manufacturing/
use/storage | Soil (14,000
cy) | Pesticides, Metala
(Arsenic) | In design; Design
completion planned
Summer 1992 | Federal lead/Fund
financed | Erna Acheson
303-294-1971
FTS-330-1971 | | 9 | FMC (Fresno)*, CA
(06/28/91) | Soil washing
followed by
solidification/
stabilization | Pesticide
manufacturing/
use/storage | Soil (30,000
cy) | Pesticides (DDT,
EDB, Toxaphene,
Chlordane) | Predesign, Design
completion planned fall
1992 | PRP lead/State
oversight | Tom Dunkelman
415-744-2395
FTS-744-2395 | | 9 | Koppers Company, Inc.
(Oroville Plant), CA
(04/04/90)
See also,
Bioremediation In Situ | Soil washing
(method to be
determined) | Wood
preserving | Soil (200,000
cy) | SVOCs
(Polychlorinated
Phenols),
Pesticides,
Dioxins | In design; Design
completion planned
Spring 1993 | PRP tead/Federat
oversight | Fred Schauffler
415-744-2365
FTS-484-2365 | [#] Status as of February 1992. [!] Indicates that a treatability study has been completed. #### **Solvent Extraction** | | Solvent Extraction | | | | | | | | | | | |--------|---|---|---|--|--|---|---|--|--|--|--| | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status * | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | | | | | 1 | Norwood PCBs, MA
(09/29/89) | Solvent extraction | Industrial
Waste dumping | Soil (28,000
cy), Sediments
(3,000 cy) | VOCs (TCE), SVOCs
(Trichlorobenzene),
PCBs, PAHs | Predesign; PD completion
planned Fall 1993 | Federal
lead/Fund
financed | Jane Downing
617-573-5708
FTS-833-1708 | | | | | 1 | O'Connor,* ME
(09/27/89) | Solvent extraction
(may be followed by
S/S for lead) | Salvage and
electrical
transformer
recycling | Soil (23,500
cy, combined),
Sediments | PCBs, PAHs, Metals
(Lead) | In design; PD completion
planned Spring 1993 | PRP lead/Federal
oversight | Ross Gilleland
617-573-5766
FTS-833-1566 | | | | | 1 | Pinette's Salvage
Yard,* ME (05/30/89) | Solvent extraction | Salvage and
vehicle repair | Soil (2,000
cy) | SVOCs
(Chlorobenzene,
Dichlorobenzene,
Trichlorobenzene),
PCBs | Design completed but not
installed; Installation
to begin Fall 1992 | Federal
lead/Fund
financed | Ross Gilleland
617-573-5766
FTS-833-1566 | | | | | 2 | Ewan Property,* NJ
(09/29/89)
See also Soil Washing | Solvent extraction
(followed by soil
washing to treat
the inorganics) | industrial
waste dumping | Soil (22,000
cy) | VOCs (PCE, TCE,
TCA, Methylene
chloride, BTX) | Predesign; Stalled by
negotiations and access
problems | Still in
negotiation | Craig DeBlase
212-264-5393
FTS-264-5393 | | | | | 4 | General Refining,* GA
Emergency Response
(Action Memo signed
08/13/85) | Solvent extraction
(oil used as fuel,
solids treated with
s/s) | Waste oil
recycling
facility | Sludge (2,700
cy), Solids
(700 cy),
Liquids (6,600
gallons waste
oil) | PCBs, Metals
(Arsenic, Copper,
Lead) | Completed; Operational
8/86 - 2/87 (see Table 4) | Federal
lead/Fund
financed;
Resource
Conservation Co. | Shane
Hitchcock
404-347-3136
FTS-257-3136 | | | | | 4 | Carolina Transformer,
NC (08/29/91) | Solvent extraction (may be followed by s/s) | Transformer
repair | Soil (15,000
cy) | PCBs | Predesign; PD completion
planned fall, 1992 | Federal
lead/Fund
financed | Michael
Townsend
404-347-7791
FTS-257-7791 | | | | | 6 | Traband Warehouse, OK
Emergency Response
(Action Memo signed
01/01/88) | Solvent extraction | Storage
management
complex | Solids | PCBs | Completed; Operational
2/89 (see Table 4) | Federal
lead/fund
financed;
Terra-Clean | Pat Hammack
214-655-2270
FTS-255-2270 | | | | | 6 | United Creosoting,* TX (09/29/89) | Solvent extraction
(critical fluid
extraction,
followed by offsite
incineration of
fluids) | Wood
preserving | Soil (with
"ter mats,"
combined
volume 67,000
cy) | VOCs, Dioxins | In design; Design
completion planned Fall
1992 | State lead/Fund
financed | Deborah
Griswold
214-655-6715
FTS-255-6715
LaReine Pound
(TX)
512-467-7897 | | | | [#] Status as of February 1992. ^{*} Indicates that a treatability study has been completed. #### **Thermal Desorption** | | Thermal Description | | | | | | | | | | | | |--------|---|--|---|---------------------|--|---|--|---|--|--|--|--| | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | | | | | | 1 | Cennon Engineering/
Bridgewater, MA
(03/31/88) | Thermal aeration
(vapors captured
w/APC) | Chemical waste
storage and
incineration
facility | Soil (11,000
cy) | VOCs (TCE, Vinyl
Chloride, Benzene,
Toluene) | 1Completed
Operational 5/90 to
10/90 (see Table 4) | PRP lead/federal
oversight;
Canonie
Engineering | Richard
Goehlert
617-573-5742
FTS-833-5742 | | | | | | 1 | Re-Solve,* MA
(09/24/87)
See also Dechlorination | Thermal aeration
(followed by
dechlorination of
the residuals) | Chemical
reclamation
facility | Soil (22,500
cy) | PCBs | Predesign;
Treatability study
completion planned
Spring 1992; Design
completion planned
1993 | PRP lead/Federal
oversight;
Chemical Waste
Management, Inc. | Lorenzo Thantu
617-223-5500
FTS-883-5500 | | | | | | 1 | McKin,* ME (07/22/85) | Thermal aeration
(vapors captured on
carbon) | Industrial
landfill | Soil (11,500
cy) | VOCs (TCE, BTX) | Completed
Operational 7/86 to
2/87 (see Table 4) | PRP lead/federal
oversight;
Canonie
Engineering | Sheila Eckman
617-573-5784
FTS-833-1784 | | | | | | 1 | Union
Chemical Co.,
OU1, ME (12/27/90) | Low temperature
thermal treatment | Solvent
recycling;
Paint
stripping | Soil (10,000
cy) | VOCs (TCE, DCE, PCE,
Xylene) | In design | PRP lead/federal
oversight | Mike Jasinski
617-573-5786
FTS-833-1786 | | | | | | 1 | Ottetí & Goss, NH
(01/16/87) | Thermal aeration | Drum storage/
disposal | Soil (16,000
cy) | VOCs (TCE, PCE, DCA,
Benzene) | Completed
Operational 6/89 to
9/89 (see Table 4) | PRP lead/Federal
oversight;
Canonie
Engineering | Stephen Calder
617-573-9626
FTS-833-1626 | | | | | | 2 | Caldwell Trucking,* NJ
(09/25/86) | Low temperature
thermal treatment | Unpermitted
septic waste
facility | Soil (37,000
cy) | VOCs (TCE, PCE, TCA) | In design; Design
completion planned
Spring 1992; Going
to bid in June 1992 | Federal
lead/Fund
financed | Ed Finnerty
212-264-3555
FTS-264-3555 | | | | | | 2 | Metaltec/Aerosystems,
OU1 - Soil Treatment,
NJ (06/30/86) | Low temperature
thermal treatment
(carbon adsorption
of vapors) | Metal
manufacturing | Soil (9,000
cy) | VOCs (TCE) | Design completed
but not installed;
Installation to
begin Summer 1992 | Federal
lead/Fund
financed | Ron Rusin
212-264-1873
FTS-264-1873
Natalie Tillman
(USACE)
816-426-5805 | | | | | | 2 | Reich Farms, NJ
(09/30/88) | Thermal desorption
(vapors will be
captured on carbon) | Uncontrolled
waste disposal | Soil (1,120
cy) | VOCs (TCE, PCE, TCA),
SVOCs | Predesign; PD
completion planned
Fall 1992; The
design will begin
after treatability
studies and be
completed in Winter
1993 | PRP lead/federal
oversight | Gary
Adamkiewicz
212-264-7592
FTS-264-7592 | | | | | Indicates that a treatability study has been completed. #### **Thermal Desorption** | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|---|--|--|---|--|--|--|--| | 2 | Waldick Aerospace
Devices,* NJ (09/29/87) | Low temperature
thermal treatment
(Offsite s/s and
disposal of
residuals) | Manufacture/
electroplating
of plane parts | Soil (2,000
cy) | VOCs (TCE, PCE) | Design completed;
Bidding underway;
RA contract award
scheduled for May
1992 | Federal
lead/Fund
financed | William
McFarland
(USACE
Technical)
816-426-5805
Susan Anderson
(USACE
Contracts)
816-426-7424 | | 2 | American Thermostat, NY
(06/29/90) | Low temperature
thermal treatment | Thermostat
Manufacturing | Soil (15,000
cy), Sediments
(300 cy) | VOCs (PCE, TCE, DCE) | In design; Design
completion planned
Spring 1992 | Federal
lead/fund
financed | Christos
Tsiamis
212-264-5713
FTS-264-5713 | | 2 | Claremont Polychemical,
NY (09/28/90) | Low temperature
thermal treatment | Paint/ink
formation | Soil (1,600
cy) | VOCs (PCE) | In design; Design
completion planned
Fall 1993 | State lead/Fund
financed; USACE | Carlos R. Ramos
212-264-5636
FTS-264-5636 | | 2 | Fulton Terminals, Soil
Treatment, NY
(09/29/89) | Low temperature
thermal treatment | Former
hazardous
waste storage
facility | Soil (4,000
cy) | VOCs (TCE, DCE, Benzene,
Xylene) | In design; Design
completion planned
Summer 1993 | PRP lead/Federal
oversight | Christos
Tsiamis
212-264-5713
FTS-264-5713 | | 2 | Sarney Farm, NY
(09/27/90) | Thermal desorption
(followed by onsite
incineration of
organics) | Industrial
landfill,
Municipal
landfill | Soil (2,000 -
8,000 cy) | VOCs (Chloroform, ICE,
PCE, Toluene), SVOCs
(Phthalates) | In design; Design
completion planned
Winter 1992 | Federal
lead/Fund
financed | Kevin Willis
212-264-8777
FIS-264-8777 | | 2 | Solvent Savers, NY
(09/30/90)
See also Soil Vapor
Extraction | Thermal desorption | Solvent
recovery/
chemical
reclamation
facility | Soil (60,000
cy) | VOCs (DCE, TCE), PCBs | Predesign; PD
completion planned
Summer 1992 | PRP lead/Federal
oversight | Lisa Wong
212-264-0276
FTS-264-0276 | | 2 | GE Wiring Devices, PR
(09/30/88) | Thermal desorption
(possible prewash
of debris with
surfactants) | Wiring
services
facility | Soil (5,500
cy, combined),
Solids
(debris) | Metals (Mercury) | In design | PRP lead/federal
oversight | Caroline Kwan
212-264-0151
FTS-264-0151 | | 3 | U.S.A. Letterkenny SE
Area, OU1, PA
(06/28/91) | Low temperature
thermal treatment
(may need s/s for
metals after
thermal desorption) | Munitions
manufacturing/
storage, Drum
storage/
disposal | Soil (8,000
cy) | VOCs (TCE, Ethylbenzene,
Xylene) | Predesign; PD
completion planned
Spring 1992 | Federal facility
U.S. Army lead | Dennis Orenshaw
215-597-7858
FTS-597-7858
Peg Geiseking
(Letterkenny)
717-267-8483 | ^{*} Indicates that a treatability study has been completed. #### **Thermal Desorption** | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status " | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------|--|---|--|--|---|--|--|--| | 3 | Saunders Supply Co,
OU1, VA (09/30/91) | Low temperature
thermal treatment
(with carbon
capture of air) | Wood
preserving | soil (25,000
cy), | SVOCs (PCP), Metals
(Arsenic) | Predesign; PD
completion planned
Spring 1992 | Federal
lead/Fund
financed | Andy Palestini
215-597-1286
FTS-597-1286 | | 4 | Ciba-Geigy Corp.
(MacIntosh Plant), AL
(09/30/91)
See also In Situ
Flushing | Thermal Desorption
(To be evaluated
during the
treatability study) | Pesticide
manufacturing/
use/storage | Soil (quantity
unknown) | Pesticides | Predesign | PRP lead/Fedreal
oversight | Charles Kane
404-347-2643
FTS-257-2643 | | 4 | Aberdeen Pesticide
Dumps, OU4, NC
(09/30/91) | Thermal desorption | Pesticide
manufacturing/
use/storage,
Plastics
manufacturing | Soil (124,000
cy) | Pesticides (DDT,
Toxaphene, Benzene
Hexachloride) | Predesign; PD
completion planned
Summer 1992 | PRP lead/federal
oversight | Kay Crane
404-347-7791
FTS-257-7791
Jack Butler
919-733-2801 | | 4 | Sangamo/Twelve-Mile/
Hartwell PCB, OU 1, SC
(12/19/90) | Thermal desorption
Organic vapors will
be captured on
carbon | Tranformer
manufacturer | Soil (100,000
cy) | VOCs, PCBs | Predesign; PD
completion planned
Spring 1993. A
treatability study
will begin when CD
is lodged and be
complete 240 days
later. | PRP lead/federal
oversight | Bart Reedy
404-347-7791
FTS-257-7791 | | 4 | Wamchem,* SC (06/30/88) | Thermal aeration
(vapors captured on
carbon) | Former dye
manufacturing
plant | Soil (2,000
cy) | VOCs (Benzene, Toluene,
Xylene) | In design; Design
completion planned
Winter 1992; 60%
design expected
shortly | PRP lead/Federal
oversight | Bart Reedy
404-347-7791
FTS-257-7791 | | 4 | Arlington Blending & Packaging Co., OU1,* TN (06/28/91) See also Dechlorination | Thermal desorption
(the residuals will
be dechlorinated) | Pesticide manufacturing/ use/storage, Other organic chemical manufacturing | Soil (24,000
cy) | VOCs (DCE), SVOCs (PCP),
Pesticides (Chlordane,
Heptachlor), Metals
(Arsenic) | Predesign; PD
completion planned
Winter 1992 | PRP lead/Federal
oversight | Derek Matory
404-347-7791
FTS-257-7791 | | 5 | Acme Solvent
Reclaiming, Inc., OU2,
IL (12/31/90)
See also Soil Vapor
Extraction | Low temperature
thermal treatment
(followed by s/s
for lead) | Industrial
landfill,
solvent
recycling | Soil (6,000 cy
combined),
Sludge | VOCs (TCA, DCE, DCA,
TCE, PCE, Vinyl
Chloride, 4-Methyl 2
Pentanone, Benzene),
SVOCs (Naphthalene),
PCBs | Predesign; PD
completion planned
Fall 1993 | PRP lead/Federal
oversight | Dennis Dalga
312-886-5116
FTS-886-5116 | Indicates that a treatability study has been completed. ### **Thermal Desorption** | Region | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |--------
--|--|--|--|---|---|--|--| | 5 | Outboard
Marine/Waukegan Harbor
OU3),* IL (03/31/89) | Low temperature
thermal treatment
(followed by
offsite
incineration of
organics) | Marine
products
manufacturing | Soil (16,000
cy, combined),
Natural
Sediments | PCBs | Operational;
Completion planned
Summer 1992 | PRP lead/Federal
oversight;
Canonie
Engineering | Cindy Nolan
312-886-0400
FTS-886-0400 | | 5 | Anderson Development
(ROD Amendment), MI
(09/30/91) | Low temperature
thermal treatment | Other organic
chemical
manufacturing | Soil (3,000 cy
combined),
Sludge | Organics (MBOCAs (4'
Methylene
Bis-dichloroaniline) | Operational;
Completion planned
Spring 1992;
Treatment began
Jan. 5, 1992; In
pilot test, MBOCAs
reduced from 2,800
ppm in sludges to
1.6 ppm | PRP lead/federal
oversight;
Weston Services,
Inc. | Jim Hehnenberg
312-353-4213
FTS-353-4213 | | 5 | Carter industries,* Mi
(09/18/91) | Low temperature
thermal treatment
(followed by s/s of
solids and
incineration of PCB
oil) | Scrap metal
salvager | Soil (46,000
cy combined),
Solids
(debris) | PCBs | Predesign; A
schedule has not
been set because
EPA is negotiating
with the PRPs | PRP lead/Federal
oversight | John Peterson
312-353-1264
FTS-353-1264 | | 5 | University of
Minnesota, MN
(06/11/90) | Thermal desorption
(fume incineration
of PCB vapors) | University
wastes | Soil (6,300
cy), Solids
(160 cy of
debris) | PCBs | In design; Design completion planned Spring 1992; The RA contract will allow incineration or thermal desorption, provided criteria are met | PRP lead/State
oversight | Darrell Owens
312-886-7089
FTS-886-7089
David Douglas
(MN)
612-296-7818 | | 6 | Martin Marietta (Denver
Aerospace), CO
(09/24/90)
See also Soil Vapor
Extraction | Low temperature thermal treatment (followed by incineration of vapors and s/s of soils) | Aerospace
equipment
manufacturer -
bulk storage
facility and
industrial
landfill | Soil (2,300
cy) | VOCs (TCE), PCBs | Predesign; PD
completion planned
Winter 1992 | State lead under
RCRA | George Dancik
303-293-1506
FTS-330-1506
Susan Chaki
(CO)
303-331-4832 | Indicates that a treatability study has been completed. ## Other Technologies | | Site Name, State, (ROD
Date) | Specific
Technology | Site
Description | Media
(Quantity) | Key Contaminants
Treated | Status ' | Lead Agency and
Treatment
Contractor (if
available) | Contacts/
Phone | |---|--|---|--|--------------------------------------|---|--|---|---| | 1 | South Municipal Water
Supply Well*, NH
(09/27/89)
See also Soil Vapor
Extraction | Air sparging of ground water | Solvent
recovery
facility Ball
Bearing
Manufacturing | ды | VOCs, (PCE, TCA,
TCE) | In design; Design
completion planned
Summer 1992 | PRP lead/Federal
oversight | Roger Duwbrt
617-573-9628
FTS-833-1628 | | 3 | Brodhead Creek, OU1, PA
(03/29/91) | CROW technology
using hot water
injection to
mobilize coal tar | Comb
gmsification | Soil (200 cy
up to 40 ft
deep) | PAHs | Predesign; PD
completion planned
Summer 1992 | PRP lead/Federal
oversight;
Remediation
Technologies | John Banks
215-597-8555
FTS-597-8555 | | 6 | Petro-Chemical Systems,
Inc., OU2, TX
(09/06/91)
See also Soil Vapor
Extraction | Air sparging of ground water | Petroleum
refining and
reuse | gw (to 30 ft
deep) | VOCs (BTEX), SVOCs
(Naphthalene),
Metals (Lead) | Predesign; PD
completion planned
Fall 1992 | PRP lead/Federal
oversight | Chris Villareal
214-655-6735
FIS-255-6735 | [#] Status as of February 1992. Indicates that a treatability study has been completed. ### **TABLE 4** ### SUMMARY INFORMATION ON COMPLETED PROJECTS Table 4 provides detailed information on the performance and operating parameters for applications of innovative treatment technologies that have been completed. It is intended to supplement, not replace, the information included in Table 3. | | | | 111 | 11 | | | | | |--------|---|---|-----------------------------|--|--|---|---|--| | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key
Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | | 1 | Cannon
Engineering/Bridgewater,
MA
5/90 to 10/90 | Thermal soil
aeration/
Canonie
Environmental
Services
Corp.,
Porter, IN | Soil (11,300
tons) | Criteria: 0.1 ppm - TCE, DCE, PCE 0.2 ppm - Toluene, Xylene 0.5 ppm - Vinyl Chloride SVOCs - 3ppm (total) Input 500 - 3,000 ppm (Total VOCs) Output - <0.025 ppm (Total VOCs) | Continuous operation 40 tons/hr 450 - 500° F Moisture content before treatment - 5% - 25% moisture Additives - dry soil (to reduce moisture content) | Excavation
Screening
Mixing
Dewatering | Residuals from air pollution control - treated on site, disposed of off site Wastewater - treated on site, disposed of off site | The waste feed size limitation for the equipment, 1.875 inches, was an important consideration. More information is available in the RA report available from Region 1. | | 1 | McKin, ME
7/86 - 2/87 | Thermal Desorption/ Canonie Env. Services Corp., Porter, IN | Soil
(11,500 cy) | VOCs Criteria:
.1 ppm TCE
Input:
up to 1,000 ppm
TCE
Output: .1 ppm | Continuous
operation
6-8 minutes
retention time
300°F | Excavation | Soils -
Solidified and
disposed onsite
Vapors -
Air carbon
capture | | | 1 | Ottati & Goss, NH
6/89 - 9/89 | Thermal Desorption/ Canonie Engineering | Soil (6,000 cy) | TCE, PCE, DCA,
Benzene
Criteria: 1 ppm
- Total VOCs
and
<100 ppb - Each
individual VOC
Output: <1ppm -
Total VOCs | Batch process | Excavation
Screening | Carbon from air pollution control unit regenerated offsite | For more information on
this project, see the
close out report available
from Region 1. | | 2 | Wide Beach Development,
NY
9/90 to 9/91 | APEG
dechlorination
/ Soil Tech
Denver, CO | Soil (40,000 cy) | Criteria: PCB - <10 ppm (1 composite sample/day) Input - 10 to 100 ppm PCB Output - 2 ppm PCB | Continuous process 8 tons/hour 200° - 580°C (450° - 1100°F) Ambient pH and moisture Additives - Alkaline polyethylene glocol (APEG) | Excavation
Screening
Staging | Treated soil -
disposed of on
site | If on-site disposal is planned, perform tests of the treated material appropriate to intended use. For further information on this dechlorination project, see the Demonstration Test Report produced by Region 2, EPA. | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key
Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|--|---|---|--|-----------------------------------|---|---| | 2 |
Upjohn Manufacturing
Company, PR
1/83 to 3/88 | Vacuum
extraction
Terra Vac
Corp. | Soil (16,000 sq
ft to
approximately 100
ft deep) | Criteria: Initially: Undefined, end point of treatment was subject to long debate. Final criteria: Carbon Tetrachloride (in exhaust stacks) - nondetectable for three consecutive months Initial concentrations - 70 mg/L (carbon tetrachloride to air) Final concentrations - nondetect (<0.002 mg/L) | Ambient conditions | | Discharge of
soil vapors
through 30-ft
stack | For further information on this application, see the Applications Analysis Report for the Terra Vac In situ Vacuum Extraction System (EPA/540/A5-89/003). | | . 2 | Signo Trading
International, Inc., NY
10/20/87 - 10/21/87
(Removal) | KPEG
dechlorination
Galson
Remediation,
Syracuse, NY | Sludge (15
gallons) | Dioxin
Input - 135 ppb
Output - 1 ppb | Temperature:
150°C
Time: Overnight | None | Incineration of residuals (without dioxin contamination) at treatment, storage, and disposal facility | | | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key
Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|---|--|--|--|------------------------------------|---|--| | 3 | Avtex Fibers, VA
4/90 - 8/91
(Removal) | Chemical Treatment (oxidation using NaClO) OH Materials, Findlay, OH (ERCS Contractor) | Sludge/water from
storage unit (2
million gallons) | Carbon Disulfide Criteria: ≤10 ppm - Carbon Disulfide in the effluent Input: 50- 200,000 ppm Carbon disulfide Output: ≤10 ppm Carbon disulfide | Batch operation average retention time - 1 hour pH - 10 Additives: Sodium hypochloride. The retention time and reagent feed rates increased with increasing concentration of sludge in the contaminated water. | Pumping | Salts from the reaction were removed with flocculation and clarification at existing treatment plant, pH adjustment | Carbon disulfide is unstable and will be found with other contaminants in aqueous waste stream. For additional information on this project, see the Removal Close Out Report available from EPA - Region III or OH Materials. | | 4 | Brown Wood Preserving,
FL
10/88 to 12/91 | Land
Treatment/
Remediation
Technologies,
Seattle,
Washington | Soil/pond
sediment (7,500
cy) | Criteria: 100 ppm total carcinogenic PAHs as sampled on 8 subplots on each lift Input - 800 to 2,000 ppm total creosote contaminants Output - 10 to 80 ppm total carcinogenic indicators | Retention time - 3
to 6 months
Additives - water
and nutrients | Excavation
Screening
Tilling | Treated
material
vegetated with
grass (no cap) | further information on this project is available from the Remedial Action Close Out Report. The vendor, RETEC, is expected to prepare a paper. | | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key
Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|--|-----------------------------|--|---|---|---|---| | 4 | Palmetto Wood
Preserving, SC
9/28/88 to 2/8/89 | Chemical treatment and soil washing Reduction of hexavalent chromium to trivalent chromium En-site (ERCS contractor) Atlanta, GA | Soil (13,000 cy) | Health-based criteria - Actual concentrations unknown Input: Arsenic - 2 to 6,200 ppm Chromium - 4 to 6,200 ppm Output: Arsenic - less than 1 ppm Chromium - 627 ppm | Soil - Batch
process
Treatment for
aqueous waste from
soil washing - 25
gallons per minute
pH - 2 to 9 | Neutralization
Mixing
Dewatering | Soil - solidified and replaced on site Wastewater - permitted discharge to the sewer line Sludges - off site disposal | (1) Used sodium meta- phosphate to lower pH to 2.0 and wash the Chromium from the soil, (2) separated the soil and solution, (3) solidified the soils, and (4) used the ferrous ion method of reduction to precipitate the chromium from solution in trivalent form. This treatment system is unique in the method of generating ferrous ion for the reducing step. The waste stream passed through an electrolytic cell containing consumable steel electrodes where the ferrous ions were electrically introduced into the waste stream. | | 4 | General Refining
Company, GA
August-October, 1986
January-February, 1987
(Removal) | Solvent extraction/ Resource Conservation Technology Company, Bellevue, WA | Studge (3,448 tons) | Input: PCB - 5.0 ppm Lead - 10,000 ppm Output: PCB - insignificant Lead - concentrated in solids | Continuous operation Time: 2 hours pH: 10 Temp: 20°C Rate: 27 tons/day Moisture content - 60% Additives: Sodium hydroxide Triethylamine | Excavation
Screening
Neutralization
Size Reduction
Mixing | Oil - used as
fuel for kiln
Water -
treated,
discharged off
site
Solids -
solidified and
disposed of on
site | The oil recovered from the extractions process could not be sold because of an elevated metals content. The solvent could not be recovered due to leaks in system seals. The unit required a relatively uniform material so materials handling of the sludges proved difficult in the beginning of the project. The lead-bearing solids produced by the dryer also required special handling. Finally, detergents in the sludge hindered oil/water separation. | | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key
Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|--|--|--|--|-----------------------------------|---|--| | 4 | Hinson Chemical, SC
12/88 - 3/92 (Removal) | Soil Vapor
Extraction/ OH
Materials
Atlanta, GA | Soil
(60,000 cy, up to
50 ft deep) | 8enzene, TCE,
PCE, DCA, MEK At completion: <10 ppm Total VOCs (In all samples); average <1 ppm Total VOCs | In situ; continuous operation (except for occasional shut downs to allow soil gas to reach equilibrium in the pore spaces) | | Air emissions
captured on
vapor phase
carbon
No cap needed | | | 5 | Seymour Recycling, IN
Summer - 1990
August-October, 1986
January-February, 1987 | In situ soil
bioremediation
ABB
Environmental
Services | Soil
(12 acres to 10
ft deep,
approximately
43,500 cy) | 54 contaminants
present,
including TCE,
TCA, and Carbon
Tetrachloride
No standards or
criteria for
this OU in ROO | Additives -
nitrogen,
phosphorus,
potassium, sulfur
(200,000 gallons
of nutrients
added) | Tilling | Capping in place | The soil became saturated quickly during this project, creating surface pools. The specially designed tractor got stuck. | | 5 | PBM Enterprises, MI
3/25/85 - 10/28/85
(Removal) | Neutralization with hypochlorite process Mid-American
Environmental Service, Riverdale, IL | Film chips (464
tons or 1,280 cy) | Cyanide
Input: 200 ppm
Output: 20 ppm | Time: 2-3 hours Additives: sodium hydroxide | Agitation | Rinse water,
runoff and
waste
hypochlorite -
treated off
site
Treated chips -
landfilled
(Subtitle D) | | | 6 | Traband Warehouse
PCBs, OK (Removal) | Solvent
Extraction/
Terra Kleen | Solids | PCBs | | | | | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key
Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|--|-----------------------------|--|---|-----------------------------------|--|----------| | 7 | Crown Plating, MO
10/1/89 to 12/31/89
(Removal) | Dechlorination
using the KPEG
process
No vendor,
work done by
EPA | Liquid (5
gallons) | Criteria: Dioxin - <1 ppb Input: Silvex - 10,000 ppm Dioxin equivalents - 24.18 ppb Output: Silvex - 32 ppb Dioxin equivalents - 0.068 ppb | Batch operation Retention time - 36 hours (including time of equipment breakdown) Temperature - 72°C pH - 13 Moisture content - 100% | | Built an on-
site vacuum for
emissions
control
Contaminated
residual oil -
incinerated
off-site | | | 7 | Scott Lumber, MO
8/87 - Fall, 91
(Removal) | Land Treatment | Soil (16,000 cy) | Criteria: 500 ppm - Total PAH 14 ppm - Benzo(a)pyrene Output: 160 ppm Total PAH 12 ppm Benzo(a)pyrene | Additives:
Water
phosphorous | Tilling | None | | | | | | <u> </u> | 11 | 111 | | | | |--------|---|---|-----------------------------|---|---|-----------------------------------|-------------------------|---| | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key
Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | | 9 | Gila River Indian
Reservation, AZ
3/28/85 - 6/24/85
(Removal) | In situ chemical treatment (followed by anserobic bio- remediation) No technology vendor ERCs | Soil (3,220 cy) | Input: Toxaphene - 1,470 ppm Ethyl parathion - 86 ppm Methyl parathion - 24 ppm Output: Toxaphene - 470 ppm Ethyl parathion - 56 ppm Methyl parathion - 56 ppm Methyl parathion - 3 ppm | pH: 10.2 to 11.8
Moisture: wet
Additives to soil:
sodium hydroxide,
water | | Bioremediation | | | 9 | Gila River Indian
Reservation, AZ
6/24/85 - 10/23/85
(Removal) | In situ anaerobic biological treatment (preceded by chemical treatment) No technology vendor | Soil (3,220 cy) | Toxaphene
Input: 470 ppm
Output: 180 ppm | pH: 8.3 to 9.8
Additives to soil:
sulfuric acid,
manure, sludge | Tilling | Capped in place | The biological treatment would have been more successful if the neutralization after the chemical treatment had been more complete. The tearing of the plastic sheets covering the soils allowed air in and prevented anaerobic activity. | | 9 | Roseville Drums, CA
2/12/88 - 11/9/88
(Removal) | In situ
Bioremediation | Soil (14 cy) | Input: Dichlorobenzene - 4,000 ppm Phenol - 12,000 ppm Output: Dichlorobenzene - 140 ppm Phenol - 6 ppm | Additives to soil:
manure, water | Tilling | | | | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key
Conteminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|--|-----------------------------|---|--|--|--|--| | 9 | Stanford Pesticide Site
#1, AZ
3/20/87 - 11/4/87
(Removal) | Chemical
treatment -
alkaline
hydrolisis
No technology
vendor | Soil (200 cy) | Methyl parathion
Input: 24.2 ppm
Output: 0.05
ppm | pH: 9.0
Moisture: wet
Additives to soil:
soda ash, water,
activated carbon | Tilling
(in situ, 3
times per
week) | | | | 9 | Poly-Carb, Inc., NV
7/22/87 - 8/16/88
(Removal) | Land treatment
and soil
flushing | Soil (1,500 cy) | Input: Phenol 1,020 ppm O-cresol - 100 ppm m- and p- cresol - 409 ppm Output: Phenol - 1 ppm O-cresol - 1 ppm m- and p- Cresol - 0.92 ppm | Additives: water | Excavation Placement in double- lined pit Irrigation Tilling | Leachate collection and treatment with granular activated carbon | This treatment used both bioremediation and soil flushing in one step. | ### **APPENDIX A** ### REMEDIAL SITES USING ESTABLISHED TREATMENT TECHNOLOGIES The table included as Appendix A shows NPL sites where established treatment technologies have been selected as part of the remedy. Established treatment technologies include: incineration, solidification/stabilization, and others. The sites are ordered by fiscal year to give some initial information as to the status of implementation; that is, the older the ROD, the more likely that design and construction have begun. ## APPENDIX A REMEDIAL ACTION SITES USING ESTABLISHED TREATMENT TECHNOLOGIES | | | | 1 | | <u> </u> | ite Incineration (continued) | | | |----|----------|---|----------|------|----------|------------------------------|--|----------| | FY | REGION | SITE NAME | STATE | F | Y | REGION | SITE NAME | STATE | | 85 | 02 | Bog Creek Farm | M7 | 8 | 9 | 05 | Big D Campground | ОН | | 85 | 02 | Bridgeport Rental & Oil | NJ | 8 | | 05 | Laskin/Poplar Oil | OH | | 85 | 05 | ACME Solvent | 1 L | 9 | Ó | 01 | New Bedford | MA | | 85 | 06 | MOTCO | TX | 9, | n | 02 | Sarney Farm | NY | | 86 | 01 | Baird & McGuire | MA | ý. | | 03 | M.W. Manufacturing | PA | | 86 | 04 | Mowbray Engineering | AL | 9 | - | 05 | | ΪĹ | | 86 | 05 | LaSalle Electrical Utilities | I.L. | 7' | U | 05 | Sangamo/Crab Orchard
National Wildlife Refuge | 11 | | 86 | 05 | Arrowhead Refinery | MN | 91 | n | 05 | Fisher Calo | IN | | 86 | 05 | Fields Brook | ОН | 9 | | 05 | Bofors Nobel | IN IN | | 86 | 06 | Sikes Disposal Pit | TX | 96 | | 05 | Springfield Township Dump | MI | | 87 | 01 | Ottati & Goss | NH | 90 | _ | 05 | | | | 87 | 01 | Davis Liquid Waste | RI | 90 | - | 05
05 | Pristine (Amendment) | OH | | 87 | 04 | Tower Chemical | FL | 9 | | 05
06 | University of Minnesota | MN | | 87 | 04 | Geiger/C&M Oil | SC | 91 | • | 06 | Vertac | AR | | 87 | 05 | Rose Township Dump | MI | 91 | | 05
07 | Texarkana Wood Preserving | TX | | 87 | 05 | Laskin/Poplar Oil | OH | 91 | | 07
07 | Missouri Electric Works | MO | | 87 | 06 | Bayou Bonfouca | LA | " | U | 07 | Hastings Groundwater | NE | | 87 | 06 | Cleve Reber | LA | | | | Contemination (East Industrial Park) | | | 88 | 01 | Rose Disposal Pit | MA | . 91 | n | 10 | FMC Yakima Pit | 144 | | 88 | 02 | Lipari Landfill | NJ | 9 | | 03 | | WA | | B8 | 02 | Love Canal | NY | 9. | | 03 | Whitmoyer Labs, Inc. OU3
Eastern Diversified Metals | PA
PA | | 88 | 03 | Delaware Sand & Gravel | DE | 9. | | 04 | Ciba Geigy Corp. | AL | | 88 | 03 | Southern Maryland Wood
Treating | MD | ý. | | 05 | Allied Chem & Ironton Coke | DH
HO | | 88 | 03 | Drake Chemical/Phase III | 84 | | | | | | | 88 | 03 | | PA | | | | | | | 88 | 03
04 | Ordnance Works Disposal
Zellwood Groundwater | WV
FL | | | | Off Site Incineration | | | 88 | 05 | LaSalle Electrical Utilities | rt
IL | | | | | | | 88 | 05 | Fort Wayne Reduction | IN | - FY | Y | REGION | SITE NAME | STATE | | 88 | 05 | Forest Waste Products | MI | • | | | | | | 88 | 05 | Pristine | OH | 84 | 4 | 05 | Berlin & Farro Liquid | MI | | 88 | 05 | Summit National Liquid Disposal | KO | | | | Incineration | | | 88 | 06 | Old Midland Products | AR | 84 | 4 | 05 | Laskin/Poplar Dil | ОН | | 88 | 06 | Brio Refining | TX | 84 | 4 | 10 | Western Processing | WA | | 88 | 07 | Times Beach | MÔ | | | | Phase I | | | 88 | 08 | Broderick Wood Products | CO | 85 | | 02 | Swope Oil & Chemical | NJ | | 89 | 01 | Baird and McGuire | MA | 85 | 5 | 05 | Byron/Johnson Salvage | I L | | 89 | 01 | Wells G&H | MA | | | | Yard | | | 89 | ŎŻ | Bog Creek Farm | NJ | 85 | | 06 | Triangle Chemical | TX | | 89 | 02 | De Rewal Chemical | NJ | 85 | | 80 | Woodbury
Chemical | CO | | 89 | 03 | Douglasville Disposal | PA | 86 | | 03 | Drake Chemical/Phase II | PA | | 89 | 04 | Smith's Farm Brooks | ΚΫ́ | 86 | | 03 | Westline | PA | | 89 | 04 | Aberdeen Pesticide Dumps/ | NC | 86 | _ | 05 | Metamora Landfill | MI | | J, | U-4 | Fairway | NL | 86 | | 05 | Spiegelberg Landfill | MI | | 89 | 04 | Celanese | NC | 86 | | 07 | Ellisville Area/Bliss | MO | | 89 | 04 | | | 87 | | 02 | Williams Property | NJ | | 89 | 04
05 | American Creosote Works
Ninth Avenue Dump | TN | 87 | | 04 | Sodyeco | NC | | 89 | 05 | New Brighton/Arden Hills | IN
Mn | 87 | ſ | 06 | Sand Springs Petrochemical
Complex | OK | Residuals to be treated with solidification/stablization. ## APPENDIX A (continued) REMEDIAL ACTION SITES USING ESTABLISHED TREATMENT TECHNOLOGIES | | Off. | -Site Incineration (continued) | | |----|----------|-------------------------------------|-------| | FY | REGION | SITE NAME | STATE | | 88 | 01 | Cannon Engineering/Plymouth | MA | | 88 | 02 | Ewan Property | NJ | | 88 | 02 | Reich Farms | NJ | | 88 | 02 | Brewster Well Field | NY | | 88 | 03 | Wildcat Landfill | DE | | 88 | 03 | Berks Sand Pit | PA | | 88 | 03 | Douglassville Disposal | PA | | 88 | 03 | fike Chemical | WV | | 88 | 05 | Belvidere Municipal
Landfill #1 | IL | | 88 | 06 | S. Calvacade St. | TX | | 88 | 07 | Minker/Stout/Romaine Creek
(R&S) | MO | | 88 | 07 | Syntex | MO | | 89 | 01 | W.R. Grace (Acton Plant) | MA | | 89 | 01 | 0'Connor | ME | | 89 | 01 | Pinette's Salvage Yard | ME | | 89 | 02 | Claremont Polychemical | NY | | 89 | 03 | M.W. Manufacturing | PA | | 89 | 03 | Whitmoyer Laboratories | PA | | 89 | 04 | Newsom Brothers Old Reichold | MS | | 89 | 05 | Cross Brothers Pail | IL | | 89 | 05 | Outboard Marine/Waukegan Harbor | 11 | | 89 | 05 | Wedzeb | 1 N | | 89 | 05 | Cliff/Dow Dump | M1 | | 89 | 05 | Alsco Anaconda | OH | | 89 | 06 | United Creosoting | TX | | 89 | 08 | Woodbury Chemical | CO | | 90 | 01 | Beacon Heights Landfill | CT | | 90 | 01 | Kearsarge Metallurgical | NH | | 90 | 02 | FAA Technical Center | NJ | | 90 | 02 | Hooker Chemical-Ruco Polymer | NJ | | 90 | 02 | Sayreville landfill | NJ | | 90 | 02 | Mattiace Petrochemicals | NY | | 90 | 02 | Sealand Restoration | NY | | 90 | 03 | Greenwood Chemical | VA | | 90 | 06 | Arkwood | AR | | 90 | 06 | Jacksonville Municipal Landfill | AR | | 90 | 06 | Rogers Road Municipal Landfill | AR | | 90 | 06
07 | Hardage/Criner (Amendment) | OK | | 90 | 07 | Fairfield Coal Gasification Plant | IA | | 90 | 07 | Shenandoah Stables | MO | | 90 | 08 | Martin Marietta (Denver Aerospace) | | | 90 | 08 | Sand Creek Industrial | CO | | 90 | 08 | Ogden Defense Depot | UT | | 91 | 01 | Union Chemical | ME | | 91 | 02 | Curcio Scrap Metal | NJ | | 91 | 02 | Swope Oil | NJ | | 91 | 02 | Waldick Aerospace Devices, Inc. | HJ | | FY | REGION | DITE NAME | | |----|--------|--|-------| | rı | KEGIUN | SITE NAME | STATE | | 91 | 02 | Circuitron | NY | | 91 | 02 | Mattiace Petrochemical | NY | | 91 | 03 | Brodhead Creek | PA | | 91 | 03 | Eastern Diversified Metals | PA | | 91 | 03 | Dixie Cavern County Lendfill | VA | | 91 | 04 | Aberdeen Pesticide Dumps
(Amendment) | NC | | 91 | 04 | Wrigley Charcoal | TN | | 91 | 05 | Acme Solvent Reclaiming Inc. | İL | | 9i | ÖŠ | Main Street Wellfield | IN | | 91 | Ö5 | Thermo Chem | IM | | 91 | ŎŚ | Carter Industries | MI | | 91 | 05 | Summit National Liquid Disposal | L I | | | | Service (Amendment) | OH | | 91 | 06 | Petrochemical (Turtle-Bayou) | TX | | 91 | 07 | Peoples Natural Gas | A1 | | 91 | 07 | Ellisville Area Site | MO | | 91 | 07 | Ellisville Area (Amendment) | MO | | 91 | 07 | Kem-Pest Laboratories | MO | | 91 | 08 | Broderick Wood Products | CO | | 91 | 08 | Hill AFB | UT | | 91 | 09 | Advanced Micro Devices Inc. | CA | | 91 | 10 | Commencement Bay - Nearshore/
Tideflats | WA. | | 91 | 10 | Northwest Transformer - Mission | WA | | Solidification/Stabilization | | | | | |------------------------------|--------|-----------------------------|-------|--| | FY | REGION | SITE NAME | STATE | | | 82 | 03 | Bruin Legoon | PA | | | 84 | . 06 | Bioecology Systems | TX | | | 85 | 04 | General Refining | GA | | | 85 | 04 | Davie Landfill | FL | | | 85 | 10 | Western Processing/Phase II | WA | | | 86 | 02 | Marathon Battery | NY | | | 86 | 03 | Bruin Lagoon | PA | | | 86 | 04 | Pepper's Steel & Alloy | FL | | | 86 | 04 | Sapp Battery Salvage | FL | | | 86 | 05 | Burrows Sanitation | MI | | | 86 | 05 | Forest Waste Products | IM | | | 87 | 01 | Davis Liquid Waste | RI | | | 87 | 02 | Chemical Control | NJ | | | 87 | 02 | Myers Property | NJ | | | 87 | 02 | Waldick Aerospace | | | | 87 | 04 | Gold Coast | MA | | | 87 | 04 | Geiger/C&M Oil | FL | | | 87 | 04 | Independent Nail | SC | | | ήı | 04 | independent Mait | SC | | ^{*} Residuals to be treated with solidification/stabilization. ## APPENDIX A (continued) REMEDIAL ACTION SITES USING ESTABLISHED TREATMENT TECHNOLOGIES | | <u>Sol idi</u> | fication/Stabilization (continued) | | 1 | <u>Sol idifi</u> | cation/Stabilization (continued) | | |------|----------------|------------------------------------|-------|------|------------------|------------------------------------|----------| | FY | REGION | SITE NAME | STATE | FY | REGION | SITE NAME | STATE | | 87 | 04 | Palmetto Wood Preserving | SC | 89 | 05 | Auto Ion Chemicals | MI | | 87 | 05 | Liquid Disposal | Mi | 89 | 06 | Pesses Chemical | LX
Li | | 87 | 05 | Northern Engraving | üi | 89 | 06 | Sheridan Disposal Services | TX | | 87 | 06 | Gurley Pit | AR | 89 | 07 | Vogel Paint & Wax | IA- | | 87 | 06 | Mid-South Wood | AR | 89 | 09 | Koppers (Oroville Plant) | CA. | | 87 | 06 | Cleve Reber | LA | 89 | 09 | Purity Oil Sales | CA | | 87 | 06 | Sand Spring Petrochemical | OK | 90 | 01 | New Bedford | MA | | | | Complex | | 90 | 02 | Roebling Steel | N7
MW | | 88 | 01 | Charles George Land Reclamation | MA | 90 | 03 | M.W. Manufacturing | PA | | 88 | 02 | Love Canal | NY | 90 | 03 | C&R Battery | VA | | 88 | 02 | Marathon Battery | NY | 90 | 03 | Greenwood Chemical | VA
VA | | 88 | 02 | York Dil | NY | 90 | 04 | 62nd Street Dump | FL | | 88 | 03 | Alladin Plating | PA | 90 | 04 | Cabot/Koppers | | | 88 | 03 | Fike Chemical | wv | 90 | 04 | Coleman-Evans Wood Preserving | FL | | 88 | 04 | Brown Wood Preserving | FL | 1 70 | V4 | (Amendment) | FL | | 88 | 04 | Flowgod | MS | 90 | 04 | Kassourf-Kimerling Battery | -1 | | 88 | 04 | Chemtronics | NC | 70 | 04 | Disposet | FL | | 88 | ŌŚ | Velsicol Chemical | ΪĹ | 90 | 04 | Schuylkill Metal | -1 | | 88 | 05 | Mid-State Disposal Landfill | νί | 90 | 04 | Yellow Wate Road | FL | | 88 | 06 | Industrial Waste Control | AR | 90 | 04 | Zellwood Groundwater | FL | | 88 | 06 | Bailey Waste Disposal | TX | 70 | 04 | Contamination (Amendment) | FL | | 88 | 06 | Brio Refining | ŤΧ | 90 | 05 | Sangamo/Crab Orchard | IL | | 88 | 06 | French Limited | Ϋ́X | 1 70 | 0,5 | National Wildlife Refuge | 11 | | 88 | 07 | Midwest Manufacturing/ | iÂ | 90 | 05 | Wayne Waste Oil | IN | | | ••• | North Farm | ••• | 90 | 05 | Springfield Township Dump | MI | | - 88 | 09 | Selma Pressure Treating | CA | 90 | 05 | Oconomowoc Electroplating | MI | | 88 | 10 | Pacific Hide & Fur Recycling | ID | 90 | 06 | Jacksonville Municipal Landfill | AR | | 88 | 10 | Gould | OR | 90 | 06 | Rogers Road Municipal Landfill | AR
AR | | 88 | 10 | Commencement Bay/NTF | WA | 90 | 07 | Shenandoah Stables | MO | | 88 | 10 | Frontier Hard Chrome | WA | 90 | 07 | Hastings Groundwater Contamination | | | 89 | 01 | Sullivan's Ledge | MA | 7 | 01 | (East Industrial Park) | n NC | | 89 | 01 | W.R. Grace (Acton Plant) | MA | 90 | 08 | Martin Marietta (Denver | co | | 89 | 01 | O'Connor | ME | 1 | ••• | Aerospace) | CO | | 89 | . 02 | DeRewal Chemical | NJ | 90 | 08 | Rocky Mountain Arsenal (OU 17) | CO | | 89 | 02 | Marathon Battery | NY | 90 | 09 | J.H. Baxter | CA | | 89 | 03 | Craig Farm | PA | 90 | 10 | Teledyne Wah Chang Albany (TWCA) | OR | | 89 | 03 | Douglassville Disposal | PA | 91 | 01 | Silresin Chemical | MA | | 89 | 03 | Hebelka Auto Salvage Yard | PA | l ģi | ŎÍ | Sulliven's Ledge | MA | | 89 | 03 | Ordnance Works Disposal | WV | 91 | ĎÍ | Union Chemical | MA | | 89 | 04 | Kassouf-Kimerling Battery | FL | 91 | ĎŽ | Asbestos Dump | NĴ | | 89 | 04 | Smith Farm Brooks | KY | 91 | 02 | Nascolite Corp. | NJ | | 89 | 04 | Cape Fear Wood Preserving | NC | 91 | 02 | NL Industries | NJ | | 89 | 04 | Celanese | NC | 91 | 02 | Roebling Steel | ИĴ | | 89 | 04 | Amnicola Dump | TN | 91 | 02 | Waldick Aerospace Services Inc. | NJ | | 89 | 05 | MIDCO I | IN | 91 | 02 | White Chemical Corp. | NJ | | 89 | 05 | MIDCO II | IN | 91 | 03 | Halby Chemical | DE | ## APPENDIX A (continued) REMEDIAL ACTION SITES USING ESTABLISHED TREATMENT TECHNOLOGIES ### Solidification/Stabilization (continued) | FY | REGION | SITE NAME | STATE | |----|--------|---|-------| | 91 | 03 | Mid-Atlantic Wood Preservers | MD | | 91 | 03 | Eastern Diversified Metals | PA | | 91 | 03 | Hebelka Auto Salvage Yard | PA | | 91 | 03 | Whitmoyer Lab (OU3) | PA | | 91 | 03 | Whitmoyer Lab (OU2) | PA | | 91 | 03 | U.S.A. Letterkenny SE | PA | | 91 | 03 | First Piedmont Quarry 719 | VA | | 91 | 03 | Saunders Supply | VA | | 91 | 04 | Interstate Lead Co. | AL | | 91 | 04 | USAF Robins Air Force Base | GA | | 91 | 04 | Maxey Flats Nuclear Disposal | KY | | 91 | 04 | Golden Strip Septic Tank | SC | | 91 | 04 | Aberdeen Pesticide Dump
(Amendment) | NC | | 91 | 04 | Carolina Transformer | NC | | 91 | 04 | Arlington Blending and
Packaging Co. | TN | | 91 | 04 | Oak Ridge OU3 | TN | | 91 | 04 | Wrigley Charcoal | TN | | 91 | 05 | Acme Solvents | iï | | 91 | 05 | Carter Industries | MĪ | | 91 | 06 | Cimarron Mining Corp. | NM | | 91 | 07 | IE Dupont de Nemours & Co., Inc. | IA | | 91 | 07 | Mid-America Tanning | ÍA | | 91 | 07 | Shaw Avenue Dump | IA | | 91 | 08 | Anaconda Co.
Smelter | MT | | 91 | 09 | FMC (Fresno Plant) | CA | | 91 | 09 | Valley Wood Preserving | CA | ### <u>Other</u> | FY | REGION | SITE NAME | STATE | TECHNOLOGY | |----|--------|-----------------------------------|-------|----------------------------| | 85 | 06 | Triangle Chemical | ΤX | Soil Aeration | | 86 | 04 | Hollingsworth Solderless | Fί | Soil Aeration | | 87 | 03 | West Virginia Ordnance | w | in situ Flamming | | 88 | 03 | Bendix Flight System | PA | Soil Aeration | | 88 | 07 | Arkansas City Dump | KS | Chemical
Neutralization | | 89 | 09 | Fairchild Semiconductor/
MTV-1 | CA | Soil Aeration | | 89 | 09 | Fairchild Semiconductor/ | CA | Soil Aeration | | 89 | 09 | Intel, Mountain View | CA | Soil Aeration | | 89 | 09 | Raytheon, Mountain View | CA | Soil Aeration | | 90 | 04 | Howe Valley Landfill | KY | Soil Aeration | ### APPENDIX B ### REMEDIAL/REMOVAL SITES USING TREATMENT TRAINS WITH INNOVATIVE TECHNOLOGIES Appendix B lists the sites where innovative treatment technologies are used with established or other innovative treatment technologies in treatment "trains." Technologies may be combined to reduce the volume of material requiring subsequent treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants within the same medium. #### APPENDIX B April 1992 ### REMEDIAL/REMOVAL SITES USING TREATMENT TRAINS WITH INNOVATIVE TECHNOLOGIES | Chemical Treatment Followed by | | | |--|--|----------------------| | In Situ Bioremediation | Gila River Indian Reservation | AZ | | Dechlorination Followed by | | | | Soil Washing | Myers Property | NJ | | Ex Situ Bioremediation Followed (| by | | | Solidification/Stabilization
Solidification/Stabilization | Whitmoyer Laboratories, OU 3
J. H. Baxter | PA
CA | | In Situ Flushing Followed by | | | | In Situ Bioremediation In Situ Bioremediation | LA Clarke & Sons
Polycarb (Removal) | VA
NV | | Soil Vapor Extraction Followed by | | | | In Situ Bioremediation
In Situ Flushing
Solidification/Stabilization
Soil Washing | Swope Oil & Chemical Co.
JADCO - Hughes
Genzale Plating Company, OU 1
Zanesville Well Field | NJ
NC
NY
OH | | Soil Washing Followed by | | ···· | | Bioremediation
Bioremediation
Bioremediation | American Creosote
Cabot Carbon/Koppers
Southeastern Wood Preserving | FL
FL | | Bioremediation
Bioremediation
Bioremediation | (Removal)
Cape Fear Wood Preserving
Moss-American
Koppers (Groville) | MS
NC
WI
CA | | Incineration
Incineration
Incineration
Solidification/Stabilization | Arkwood
South Cavalcade Street
Sand Creek OU 5 | AR
TX
CO | | | FMC (Fresno) | CA | ### Solvent Extraction Followed by | Incineration
Soil Washing
Solidification/Stabilization
Solidification/Stabilization | United Creosoting Ewan Property O'Connor General Refining (Removal) | TX
NJ
ME
GA | |--|---|----------------------| | Thermal Description Followed by | | ~ | | Dechlorination | Resolve | MA | | Dechlorination | Arlington Blending & Packaging | | | | Co. 0U 1 | TN | | Incineration of Organic Vapors | Sarney Farm | NY | | Incineration of Organic Vapors | Outboard Harine/Waukegan Harbor | IL | | Incineration of Organic Vapors | Carter Industries | MI | | Incineration of Organic Vapors | University of Hinnesota | MN | | Incineration of Organic Vapors | Hartin Marietta (Denver Aerospace) | CO | | Solidification/Stabilization | Waldick Aerospace Devices | NJ | | Solidification/Stabilization | USA Letterkenny (SE Area, OU 1) | PA | | Solidification/Stabilization | Acme Solvent Reclaiming, Inc. OU 2 | IL | | Solidification/Stabilization | Corter Industries | MI | | Solidification/Stabilization | Martin Marietta (Denver Aerospace) | CO | ### INNOVATIVE TREATMENT TECHNOLOGIES: SEMI-ANNUAL STATUS REPORT EPA/540/2-91/001 ### **Document Request Form** This report is distributed twice a year to Superfund management in U.S. EPA Headquarters and regional offices, pertinent EPA laboratories, states, EPA libraries, and representatives of other federal agencies. All project contacts listed in the report also receive a copy. If you would like to be added to or deleted from the mailing list for future reports, please complete the following form and send it to: U.S. EPA/EPIC P.O. Box 42419 Cincinnati, OH 45242-2419 | | Please add my name to the mailing list: | | | Please remove my name and address from the mailing list. | | | |--------|---|---|-------------|--|-------------|--| | | Name | | | | | | | | Company | | | | | | | Street | or P.O. Box | | | | | | | | | City | | State | Zip | | | | My name is al | ready on the mailing list. Please change the ad | ldress | | | | | | FROM: | | TO: | | | | | | | | | | | | | | | | | | | | If you would like copies of this third edition of the "Innovative Treatment Technologies: Semi-Annual Status Report," call ORD Publications at 513-569-7562 and ask for it by number, EPA 540/2-91/001. United States Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office (OS-110W) Washington, DC 20460 Official Business, Penalty for Private Use \$300 EPA/540/2-91/001 BULK RATE Postage and Fees Paid EPA G-35