Printed on Recycled Paper # **Innovative Treatment Technologies: Annual Status Report** (Sixth Edition) EPA-542-R-94-005 Number 6 September 1994 # INNOVATIVE TREATMENT TECHNOLOGIES: ANNUAL STATUS REPORT (Sixth Edition) U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 #### NOTICE This material has been funded wholly or in part by the United States Environmental Protection Agency under contract number 68-C0-0047. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. To obtain a copy of this report, fill out the request form on the next page and mail or fax it to: U.S. EPA/NCEPI P.O. Box 42419 Cincinnati, OH 45242 Fax Number: 513-891-6685 # INNOVATIVE TREATMENT TECHNOLOGIES: ANNUAL STATUS REPORT #### Request to be on Mailing List This report is distributed once a year to Superfund management in U.S. EPA Headquarters and regional offices, pertinent EPA laboratories, states, EPA libraries, and representatives of other federal agencies. All project contacts listed in the report also receive a copy. If you would like your name added to or deleted from the mailing list for future reports or would like a copy of the 6th edition, please complete the following form and send or fax it to: U.S. EPA/NCEPI P.O. Box 42419 Cincinnati, OH 45242-0419 Fax number: 513-891-6685 | Please send me a copy of the 6th Edition, EPA-542-R-94-005. | ☐ I already have a copy of the 6th Edi | tion, EPA-542-R-94-005. | |---|---|---------------------------| | Please add my name and address to the mailing list: | Please remove my name and addre | ss from the mailing list. | | Name | · • • • • • • • • • • • • • • • • • • • | | | Company | | | | Street or P.O. Box | · · · · · · · · · · · · · · · · · · · | | | City | State | _ Zip | | My name is already on the mailing list. Please change | e the name and address. | | | FROM: | TO: | | | | | | | | | | #### **FOREWORD** In April 1990, the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response (OSWER) established the Technology Innovative Office (TIO) to promote the use of innovative treatment technologies for contaminated site cleanup. TIO's mission is to encourage government and industry to increase the use of innovative treatment technology to mitigate contaminated waste sites, soils and ground water. One of TIO's goals is the removal of regulatory and institutional barriers to the development and use of innovative technologies. Another is the provision of richer technology and market information to target audiences, including federal agencies, states, consulting engineering firms, responsible parties, technology developers, technology vendors and the investment community. This report documents the status of innovative treatment technology use in the Superfund program. To a lesser extent, the report presents information on innovative treatment projects at non-Superfund sites under the jurisdiction of the Department of Defense and the Department of Energy. We have expanded the report to include many new innovative projects selected by EPA in fiscal year 1993 and numerous graphics and tables to assist the reader in understanding the data. We hope that this information will allow better communication between experienced technology users and those who are considering innovative technologies to clean up contaminated sites, as well as enabling technology vendors to evaluate the market for innovative treatment technologies in Superfund for the next several years. The use of innovative treatment technologies in Superfund and other EPA waste programs is addressed by a directive, Furthering the Use of Innovative Treatment Technologies in OSWER Programs (OSWER Directive 9380.0-17, June 10, 1991). This directive sets forth seven initiatives to remove impediments from and create incentives for the use of innovative treatment technologies for Superfund, corrective action under the Resource Conservation and Recovery Act (RCRA), and underground storage tank cleanups. It is hoped that efforts such as the directive and this document will increase the reliance on new, less costly, or more effective technologies to address the problems associated with Superfund and other hazardous waste sites, and petroleum contamination. Walter W. Kovalick, Jr. Ph.D. Director, Technology Innovation Office This document was prepared under the direction of Ms. Linda Fiedler, work assignment manager for the U.S. Environmental Protection Agency's Technology Innovation Office. Special acknowledgement is due the Regional and state staff listed as contacts for individual sites. They provided the detailed information in this document. Their cooperation and willingness to share their knowledge and expertise on innovative treatment technologies encourages the application of those technologies at other sites. #### **ABSTRACT** This yearly report (formerly published twice a year) documents and analyzes the selection and use of innovative treatment technologies in the U.S. EPA Superfund Program and at some non-Superfund sites under the jurisdiction of the Departments of Defense (DoD) and Energy (DOE). The status of most projects have been updated, and projects selected in fiscal year 1993 Superfund Records of Decision (ROD) are included. The information will allow better communication between experienced technology users and those who are considering innovative technologies to clean up contaminated sites. In addition, the information will enable technology vendors to evaluate the market for innovative technologies in Superfund for the next several years. It also will be used by EPA's Technology Innovation Office to track progress in the application of innovative treatment technologies. Alternative treatment technologies are alternatives to land disposal. Innovative treatment technologies are alternative treatment technologies the use of which at Superfund and similar sites is inhibited by lack of data on cost and performance. This report documents the use of the following innovative treatment technologies to treat ground water (in situ), soils, sediments, sludge, and solid-matrix wastes: - Bioremediation (Ex Situ) - Bioremediation (In Situ) - Chemical treatment - Dechlorination - In situ flushing - In situ vitrification - Soil vapor extraction - Soil washing - Solvent extraction - Thermal desorption - Other technologies (air sparging, contained recovery of oil wastes, limestone barriers and furning gasification) The document includes information on 290 applications of innovative treatment technologies for remedial actions, 31 applications for removal actions, and 28 applications under other federal programs. Sections 1, 2, and 3 contain summary information for Superfund remedial, removal and other Federal program sites, at which innovative treatment has been selected or used. Appendices A, B, and C contain site-specific information for Superfund remedial, removal and other federal program sites respectively. The information for these sections was collected through analyses of RODs, review of OSWER tracking systems, and interviews with EPA regional, DoD, and DOE staff. Appendix E also contains performance and operating data on the 25 remedial, 20 removal, and 7 non-Superfund innovative projects that have been completed. #### **CONTENTS** | | | Page | |--|----------|------| | Notice | | ii | | Document Request Form | | iii | | Foreword | | iv | | Acknowledgements | | v | | Abstract | | vi | | List of Figures | | viii | | List of Tables | | ix | | List of Abbreviations | | х | | OVERVIEW | * *. * | | | Introduction | • | OV-1 | | What are Alternative and Innovative Treatment Technologies? | ÷ | OV-1 | | Sources of Information for this Report | | OV-1 | | Definitions for Specific Innovative Treatment Technologies | | OV-2 | | SECTION 1: INNOVATIVE SUPERFUND REMEDIAL ACTIONS | | 1 | | Frequency of Technology Selection | | 1 | | Status of Innovative Technology Implementation | | 6 | | Contaminants of Addressed by Innovative Treatment Technologies | | 6 | | Quantity of Soil Addressed | | • 6 | | Treatment Trains | | 7 | | SECTION 2: INNOVATIVE SUPERFUND REMOVAL ACTIONS | | 8 | | Frequency of Technology Selection | | 8 | | Status of Innovative Technology Implementation | | 9 | | Contaminants Addressed by Innovative Treatment Technologies | | 10 | | Treatment Trains | | 10 | | SECTION 3: INNOVATIVE ACTIONS UNDER OTHER FEDERAL | PROGRAMS | 11 | | Site Status and Technology Summary Matrix | | 13 | | _ | | | | | | | |-------|--|--------------|--|--|--|--| | _ | ndices | Page | | | | | | Appe | endix A: Innovative Technologies at Superfund Remedial Actions | · | | | | | | | e A-1: Superfund Remedial Actions: Site-Specific Information by Innovative Treatment Technology | A-1 | | | | | | | e A-2: Superfund Remedial Actions: Established Treatment Technologies by Fiscal Year | A-68 | | | | | | Appe | endix B: Innovative Technologies at Superfund Removal Actions | | | | | | | | e B-1: Superfund Removal Actions: Site-Specific Information by Innovative Treatment Technology | B-1 | | | | | | | endix C: Innovative Technologies at Actions Under Other Federal Programs | | | | | | | | e C-1: Other Federal Programs: Site-Specific Information by Innovative Treatment Technology | C-1 | | | | | | Appe | endix D: Summary of Status Report Updates, Changes, and Deletions | D-1 | | | | | | Appe | endix E: Completed Innovative Projects and Treatment Trains | E-1 | | | | | | | e E-1: Superfund Remedial Actions: Performance Data on Completed Projects | E-1 | | | | | | | e E-2: Superfund Removal Actions: Performance Data
on Completed Projects e E-3: Other Federal Programs: Performance Data on Completed Projects | E-11 | | | | | | | | E-19
E-22 | | | | | | | - F | | | | | | | 1 401 | e E-5: Superfund Removal Actions: Treatment Trains with Innovative Treatment Technologies | E-25 | | | | | | | LIST OF FIGURES | | | | | | | Num | iber | Page | | | | | | 1 | Superfund Remedial Actions: RODs Signed by Fiscal Year | 1 | | | | | | 2 | Superfund Remedial Actions: Source Control RODs by Fiscal Year | 1 | | | | | | 3 | Superfund Remedial Actions: Overview of Source Control RODs Through Fiscal Year 1993 | 2 | | | | | | 4 | Superfund Remedial Actions: Treatment and Disposal Decisions for Source Control | 2 | | | | | | 5 | Superfund Remedial Actions: Summary of Alternative Treatment Technologies Selected | _ | | | | | | | Through Fiscal Year 1993 | 3 | | | | | | 6 | Superfund Remedial Actions: Number of Established Versus Innovative Treatment Technologies | 4 | | | | | | 7 | Superfund Remedial Actions: Number of Innovative Treatment Technologies Versus | 4 | | | | | | | Corresponding RODs | • | | | | | | 8 | Superfund Remedial Actions: Innovative Treatment Technologies by Year | 5 | | | | | | 9 | Superfund Remedial Actions: Trends in the Selection of Four Innovative Treatment Technologies | 5 | | | | | | 10 | Superfund Remedial Actions: Project Status of Innovative Treatment Technologies as of June 1994 | 6 | | | | | | 11 | Superfund Remedial Actions: Application of Innovative Treatment Technologies | 6 | | | | | | 12 | Superfund Remedial Actions: Quantities of Soil to be Treated by Innovative Technologies | 12 | | | | | ı ## **LIST OF FIGURES (Continued)** | 13 | Superfund Removal Actions: Summary of Innovative Technologies Selected/Used as of June 1994 | 8 | |-----|--|------| | 14 | Superfund Removal Actions: Project Status of Innovative Treatment Technologies as of June 1994 | 9 | | 15 | Superfund Removal Actions: Application of Innovative Treatment Technologies | 10 | | 16 | Sample of Projects Under Other Federal Programs: Summary of Treatment Technologies as of June 1994 | 11 | | 17 | Sample of Projects Under Other Federal Programs: Status of Innovative Treatment Technologies as of June 1994 | 12 | | E-1 | Superfund Remedial Actions: Treatment Trains with Innovative Treatment Technologies | E-23 | #### LIST OF ABREVIATIONS | AM | Action Memorandum | NPL | National Priorities List | |-------------|--|--------|---| | APC | Air pollution control | OERR | Office of Emergency and Remedial Response | | APEG | Alkaline metal hydroxide/polyethylene glycol | OSC | On-scene coordinator | | ARCS | Alternative remedial contracts strategy | OSWER | Office of Solid Waste and Emergency Response | | ATTIC | Alternative Treatment Technology Information | OU | Operable unit | | | Center | PAH | Polynuclear aromatic hydrocarbon | | BCD | Base catalyzed dechlorination | PCB | Polychlorinated biphenyl | | BTEX | Benzene, toluene, ethylbenzene, and xylene | PCE | Perchloroethylene (tetrachloroethylene) | | BTX | Benzene, toluene, and xylene | PCP | Pentachlorophenol | | сy | Cubic yards | PRP | Potentially responsible party | | DCA | Dichloroethane | RA | Remedial action | | DCE | Dichloroethylene | RCRA | Resource Conservation and Recovery Act | | DEHP | Di(2-ethylhexyl phthalate) | RD | Remedial design | | DLA | Defense Logistics Agency | ROD | Record of Decision | | DNT | Dinitrotoluene | RPM | Remedial project manager | | EECA | Engineering Evaluation/Cost Analysis | RSKERL | Robert S. Kerr Environmental Research Laboratory, | | ESD | Explanation of significant differences | | Ada, Oklahoma (EPA) | | FAA | Federal Aviation Administration | SARA | Superfund Amendment and Reauthorization Act | | ft | Feet | | of 1986 | | FUDS | Formerly used defense sites | SACM | Superfund Accelerated Cleanup Model | | FY | Fiscal year | SVOC | Semivolatile organic compound | | gw | Ground water | S/S | Solidification and stabilization | | IRP | Installation Restoration Program | TCA | Trichloroethane 4 | | KPEG | Potassium hydroxide/polyethylene glycol | TCE | Trichloroethylene | | MEK | Methyl ethyl ketone | TIO | Technology Innovation Office | | | 4,4'-Methylenebis(2-chloroaniline) | USACE | U.S. Army Corps of Engineers | | NAPL | Nonaqueous phase liquids | USDA | U.S. Department of Agriculture | | NFEC | Navy Facilities Engineering Command | VOC | Volatile organic compound | | | | | | #### **OVERVIEW** #### Introduction The Technology Innovation Office (TIO) of the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response (OSWER) has prepared this *Innovative Treatment Technologies: Annual Status Report* to document the use of innovative treatment technologies to remediate both Superfund and non-Superfund sites. The report contains site-specific information on Superfund sites (both remedial and removal actions) and non-Superfund sites (sites addressed under other federal programs) at which innovative treatment technologies are being used. Site managers can use this report in evaluating cleanup alternatives. Innovative technology vendors can use it in identifying potential markets. TIO also uses the information to track progress in the application of innovative treatment technologies. The report is updated annually. This September 1994 issue of the report updates and expands information provided in the September 1993 report. Information added to this update includes 60 innovative treatment technologies selected for remedial actions in fiscal year (FY) 1993 Superfund records of decision (ROD)—a ROD is the decision document used to specify the way a site, or part of a site, will be remediated—and information on 11 additional completed projects. #### What Are Alternative and Innovative Treatment Technologies? Alternative treatment technologies are alternatives to land disposal. The most frequently used alternative technologies are incineration and solidification/stabilization. Innovative treatment technologies are alternative treatment technologies for which applications at Superfund and similar sites are inhibited by lack of data on performance and cost. In general, a treatment technology is considered innovative if it has had limited full-scale application. Often, it is the application of a technology or process to soils, sediments, sludge, and solid- matrix waste (such as mining slag) that is innovative. Groundwater treatment after the water has been pumped to the surface often resembles traditional water treatment technologies; thus, in general, pump-and-treat or ex situ groundwater remedies are considered established. In situ bioremediation and other in situ treatment of groundwater, however, are considered innovative technologies. This report documents the use of the following innovative treatment technologies to treat soils, sediments, sludge, and solid-matrix waste: - Bioremediation (Ex Situ) - Bioremediation (In Situ) - Chemical treatment - Dechlorination - In situ flushing - In situ vitrification - · Soil vapor extraction - Soil washing - Solvent extraction - Thermal desorption - Other technologies (e.g., air sparging, contained recovery of oily wastes, limestone barriers, and furning gasification) In addition, the remedial sites that are using in-situ bioremediation for groundwater remediation are included with the in situ bioremediation projects. #### Sources of Information for This Report EPA initially used RODs from individual sites to compile information on remedial actions and pollution reports, on-scene coordinators' reports, and the OSWER Removal Tracking System to compile data on emergency response actions. The U.S. Army Corps of Engineers Hazardous, Toxic, Radioactive Waste (HTRW) Mandatory Center of Expertise (Omaha, Nebraska) and the Synopses of Federal Demonstrations of Innovative Site Remediation Technologies, Third Edition (EPA/542/B-93/009) were consulted to compile information on projects under other federal programs. EPA then verified and updated the draft information through interviews with remedial project managers (RPM) and on-scene coordinators (OSC) and other contacts for each site. The data concerning project status do not duplicate data in CERCLIS, EPA's Superfund tracking system. This report provides more detailed information specifically on the portion of the remedy pertaining to an innovative technology. In addition, information about technologies and sites identified here might differ from information found in the ROD annual reports and the RODs database. These differences are the result of design changes in the treatment trains used at sites that may or may not require official documentation (that is, a ROD amendment or an explanation of significant differences (ESD)). #### **Definitions of Specific Innovative Treatment Technologies** The innovative treatment technologies reported in the following chapters treat hazardous wastes in very different ways. The following paragraphs define the technologies as they are represented in this document and provide summary statistics on some of the technologies. EX SITU BIOREMEDIATION uses microorganisms to degrade organic contaminants on excavated soil, sludge, and solids. The microorganisms break down the contaminants by using them as a food source. The end products are typically CO₂ and H₂O. Ex situ bioremediation includes slurry-phase bioremediation, in which the soils are mixed in water to form a slurry, and solid phase bioremediation, in which the soils are placed in a tank or building and tilled with water, and nutrients. Variations of the latter process are called land farming or composting. In applications of IN SITU BIOREMEDIATION, nutrients and an oxygen source are pumped under pressure into the soil or aquifer through wells, or they
are spread on the surface for infiltration to the contaminated material. In CHEMICAL TREATMENT the contaminants are converted to less hazardous compounds through chemical reactions. The technology is most often used to reduce a contaminant (hexavalent chromium to the trivalent form) or oxidize a contaminant (cyanide, for example). Neutralization is considered an available technology and is not included in this report. DECHLORINATION (another type of chemical treatment) results in the removal or replacement of chlorine atoms bonded to hazardous compounds. For IN SITU FLUSHING, large volumes of water, at times supplemented with treatment compounds, are introduced to soil, waste, or groundwater to flush hazardous contaminants from a site. This technology is predicated on the assumption that the injected water can be isolated effectively within the aquifer and recovered. IN SITU VITRIFICATION treats contaminated soil in place at temperatures of approximately 3000°F (1600°C). Metals are encapsulated in the glass-like structure of the melted silicate compounds. Organics may be treated by combustion. SOIL WASHING is used for two purposes. First, the mechanical action and water (sometimes with additives) physically remove the contaminants from the soil particles. Second, agitation of the soil particles allows the smaller diameter, more highly contaminated fines to separate from the larger soil particles, thus reducing the volume of material requiring further treatment. SOLVENT EXTRACTION operates on the principle that organic contaminants can be solubilized preferentially and removed from the waste in the correct solvent. The solvent used will vary, depending on the waste to be treated. For THERMAL DESORPTION, the waste is heated in a controlled environment to cause organic compounds to volatilize from the waste. The operating temperature for thermal desorption is usually less than 1000°F (550°C). The volatilized contaminants usually require further control or treatment. SOIL VAPOR EXTRACTION removes volatile organic constituents from the soil in place through the use of vapor extraction wells, sometimes combined with air injection wells, to strip and flush the contaminants into the air stream for further treatment. OTHER TECHNOLOGIES include air sparging and the contained recovery of oilŷ wastes (CROW), limestone barriers, and furning gasification technologies. Air sparging involves injecting air into the aquifer to strip or flush volatile contaminants as the air percolates up through the groundwater and is captured by a vapor extraction system. The CROW process displaces oil wastes with steam and hot water. The contaminated oils and groundwater are swept into a more permeable area and are pumped out of the aquifer. Limestone barriers act like chemical slurry walls. Contaminated groundwater comes into contact with the barrier and pH increases. The increase in pH effectively immobilizes dissolved metals and neutralizes the soil. Fuming gasification is a thermal treatment process that purges contaminants from solids and soils as metal fumes and organic vapors. The organic vapors can be burned as fuel and the metal fumes can be recovered and recycled. The following sections contain summary information and analysis on sites at which innovative treatment technologies are being or have been applied. Section 1 covers all Superfund sites implementing an innovative treatment technology under a remedial action. These actions are usually documented in a ROD. Section 2 provides information on Superfund removal action sites. Removals are conducted in response to an immediate threat caused by a release of hazardous substances.* Section 3 covers non-Superfund sites or sites being addressed under other federal programs. ^{*} Historically, remedial and removal actions operate under different procedural guidelines. The EPA currently is revising the Superfund process under the Superfund Accelerated Cleanup Model (SACM). Under SACM, EPA will adopt a continuous process for assessing site specific conditions and the need for action. Risks will be reduced quickly through early remedial or removal action. THIS PAGE INTENTIONALLY LEFT BLANK #### SECTION 1: SUPERFUND REMEDIAL ACTIONS #### Frequency of Technology Selection ROD Statistics As of April, 1994, there are 1,287 sites on the National Priorities List (NPL), excluding 58 sites deleted from the NPL. 1,207 RODs (including ROD Amendments) had been signed. Most RODs for remedial actions address the source of contamination, such as soil, sludge, sediments, solid-type wastes, and nonaqueous phase liquids (NAPL). These RODs are referred to as "source control" RODs. Other RODs address ground water only or specify that no action is necessary. Figure 1 shows the number of source control RODs compared with the total number of RODs for each fiscal year. An analysis of source control RODs allows a comparison of the frequency of selection of treatment with that of selection of containment or disposal to remedy contamination at sites. Source control RODs are classified by the general type of technology selected: (1) RODs specifying some alternative treatment, (2) RODs specifying containment or disposal only, and (3) RODs specifying other action (such as land use restrictions, monitoring, or relocation). Figure 1 shows the number of source control RODs that fall under each category. RODs in which some treatment is selected may include containment of treatment residuals or of waste from another part of the site. Overall, 64 percent of source control RODs have selected at least one treatment technology for source control (Figure 3). The Superfund Amendments and Reauthorization Act of 1986 (SARA) required that EPA favor permanent remedies (that is, alternative treatment) over containment or disposal to remediate Superfund sites. In each of the past six years at least 70 percent of source control RODs contained provisions for the treatment of wastes. The increase is most dramatic in FY1988. Fifty percent of RODs in FY 1987 selected some treatment for source control, whereas 69 percent of RODs in FY 1988 selected some treatment (Figure 4). The percentage was 72 percent in FY 1993. Figure 4 also illustrates the percentage of RODs selecting at least one *innovative technology*, as updated by current project status information. Out of a total of 914 source control RODs signed through FY 1993, innovative technologies were selected and are still being considered or used for approximately 29 percent of source control RODs. Overall, 22 percent of all RODs have included innovative technologies. <u>Technology Statistics</u> Another way of illustrating the greater use of treatment is by quantifying the number and kinds of treatment technologies selected and used. Most of the remainder of the information contained in this chapter focuses on technologies, rather than RODs. In each ROD in which treatment was specified, several alternative treatment technologies may have been selected. Through FY 1993, 642 treatment technologies have been selected in 588 source control RODs specifying some treatment. In addition, EPA has selected in situ treatment of ground water for 24 remedial sites for a total 666 treatment technologies. EPA selected in situ treatment of groundwater for three remedial sites in FY 1993. The selection of multiple technologies results from the use of treatment trains or from the treatment of different wastes or areas of the site. For the 588 RODs specifying treatment for source control, Figure 5 lists each type of treatment technology selected and how often it has been selected or used for source control. Figure 5 illustrates that, through FY 1993, 44 percent of the 666 treatment technologies selected were innovative and 56 percent were established. Table A-1, appearing in Appendix A, contains summary information on the innovative treatment technology projects at remedial sites. Table A-2 lists sites using established technologies. Information on the established treatment technologies is based on a review by the Office of Emergency and Remedial Response (OERR) rather than interviews of Regional or State staff. # FIGURE 5 SUPERFUND REMEDIAL ACTIONS: SUMMARY OF ALTERNATIVE TREATMENT TECHNOLOGIES SELECTED THROUGH FISCAL YEAR 1993 (Total Number of Technologies = 666) Note: Data are derived from 1982 – 1993 Records of Decision (RODs) for fiscal years and anticipated design and construction activities as of July 1994. More than one technology per site may be used. - () Number of times this technology was selected or used. - "Other" established technologies are soil aeration, in situ flaming, and chemical neutralization. "Other" innovative technologies are air sparging, contained recovery of oily wastes, limestone barriers, and fuming gasification. - Includes 24 in situ groundwater treatment remedies. Figure 6 compares the numbers of established and innovative technologies by fiscal year. The figure indicates that more innovative technologies than established technologies have been selected in RODs in fiscal years 1991 and 1993. Figure 7 compares the number of innovative technologies selected with the number of sites. This graph illustrates that some sites are using more than one innovative technology, often together in "treatment trains." The figure also indicates that the ratio of innovative technologies to sites has increased every year since FY 1986. Figure 8 gives the frequency of selection for each innovative technology by fiscal year. Figure 9 shows the frequency of selection for the four most frequently selected innovative treatment technologies, including soil vapor extraction by fiscal year. FIGURE 8 SUPERFUND REMEDIAL ACTIONS: INNOVATIVE TREATMENT TECHNOLOGIES BY YEAR #### Fiscal Year | Technology | 1984 | 1985 | 1985 | 1987 | 1968 | 1989 | 1990 | 1991 | 1992 | 1993 | TOTAL | |----------------------------|------|------|------|------|------|------|------|------|------|------|-------| | Soil Vapor
Extraction | 0 | 2 | 2 | 1 | В | 19 | 18 | 322 | 20 | 19 | 121 | | Bioremediation (Ex Situ) | 1 | | | • | | 8 | | | 9 | 7 | 333 | | Thermal Descrption | C | 1 | 1 | 3 | 4 | 2 | 7 | 10 | 4 | 9 | 41 | | Bioremediation (in Shu) | 0 | 3 | 0 | 2 | 2 | | 3 | | 8 | | 30 | | Soil Washing | 0 | 0 | 0 | 0 | 4 | 2 | 8 | 1 | 2 | 0 | 15 | | in Sku Plushing | 0 | | | 0 | 2 | 3 | | | | 2 | 18 | | Other | 0 | 0 | ٥ | 0 | 0 | 1 | 0 | 4 | 4 | 8 | 15 | | Dechlorination | 0 | | 0 | 0 | D | 0 | 1 | . 2 | 0 | | · | | Solvent Extraction | 0 | ٥ | ٥ | 0 | ٥ | 3 | 0 | 1 | 0 | 0 | 4 | | Chemical Treatment | 0 | ø | 0 | 0 | 0 | 0 | 0 | 0 | | • | | | Vitrification | 0 | ٥ | ٥ | 0 | C | 1 | ٥ | 1 | 0 | 0 | 2 | | TOTAL | 1 | • | • | • | 24 | 42 | 40 | 63 | 50 | 53 | 290 | NOTE: Data derived from Fiscal Year 1982 - 1993 Records of Decision (RODs) and anticipated design and construction activities as of June 1994 # FIGURE 9 SUPERFUND REMEDIAL ACTIONS: TRENDS IN THE SELECTION OF FOUR INNOVATIVE TREATMENT TECHNOLOGIES * Also includes in situ groundwater treatment. NOTE: Data derived from Fiscal Year 1982 - 1993 Records of Decision (RODs) and anticipated design and construction activities as of June 1994 #### **Status of Innovative Technology Implementation** Many of the innovative technologies documented in this report have been selected in the last several years. The design of such projects typically takes one to three years; therefore, relatively few innovative technologies have been contracted for and installed, and even fewer have been completed (Figure 10). In the next several years, though, many projects now in design should become operational. The summary matrix presents remedial action sites using innovative treatment technologies by status and specific technology. Table E-1 in Appendix E presents detailed information on remedial projects that have been completed. FIGURE 10 SUPERFUND REMEDIAL ACTIONS: PROJECT STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF SEPTEMBER 1994 | | Predesign/
In Design | Design Complete/
Being Installed/
Operational | Project
Completed | Total | |--------------------------|-------------------------|---|----------------------|-------| | Soil Vapor Extraction | 69 | 42 | 10 | 121 | | Thermal Desorption | 26 | 7 | 8 | 41 | | Ex Situ Bioremediation | 24 | 12 | 2 | 38 | | In Situ Bioremediation | 14 | 14 | 2 | 30 | | Soil Washing | 11 | 3 | 1 | 15 | | In Situ Flushing | 14 | 3 | 1 | 18 | | Dechlorination | 3 | 1 | 1 | 5 | | Solvent Extraction | 3 | 1 | 0 | 4 | | in Situ Vitrification | 1 | 1 | 0 | 2 | | Chemical Treatment | 1 | 0 | 0 | 1 | | Other Innovative Treatme | ent 12 | 3 | 0 | 15 | | Total | 178 (61%) | 87 (30%) | 25 (9%) | 290 | Note: Data are derived from 1982 – 1993 Records of Decision (RODs) and anticipated design and construction activities as of June 1994. #### Contaminants Addressed by Innovative Treatment Technologies The data collected for this report form the basis for an analysis of the classes of contaminants treated by each technology type at remedial action sites. Figure 1-11 provides this information, by technology, for three major contaminant groups: volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and metals. For this report, compounds are categorized as VOCs or SVOCs, according to the lists provided in EPA's SW-846 Test Methods 8240 and 8270, respectively. #### Quantity of Soil Addressed EPA analyzed the quantity of soil treated at 209 sites using innovative treatment technologies, and for which quantity data were available (Figure 12). This analysis provides an indication of the scale of the projects involved. #### **Treatment Trains** Innovative treatment technologies in this report may be used with established or other innovative treatment technologies in treatment trains. Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. Appendix E presents the data on treatment trains contained within this report. Tables E-4 and E-5 lists the sites at which treatment trains are being used. FIGURE 12 SUPERFUND REMEDIAL ACTIONS: QUANTITIES OF SOIL TO BE TREATED BY INNOVATIVE TECHNOLOGIES | Technology | Number Of Sites With Data
(Total Number Of Sites) | Que
Range | antity (Cubic Yards
Average |)
Total | |--------------------------|--|-----------------|--------------------------------|------------| | n Situ Flushing | 11 (18) | 5,200 - 650,000 | 90,000 | 990,100 | | Soil vapor extraction | 86 (121) | 60 - 2,000,000 | 85,000 | 7,346,745 | | Bioremediation (in situ) | 12 (30) | 5,000 - 250,000 | 54,000 | 653,450 | | Soil washing | 15 (15) | 1,800 - 200,000 | 35,100 | 526,500 | | Sovent extraction | 4 (4) | 9,000 - 85,000 | 42,000 | 167,500 | | Bioremediation (ex situ) | 32 (38) | 1,000 - 208,000 | 42,000 | 1,304,195 | | Thermal desorption | 38 (41) | 1,800 - 130,000 | 21,000 | 808,200 | | Dechlorination | 3 (5) | 700 - 48,000 | 22,000 | 66,500 | | Vitrification | 2 (2) | 1,500 - 5,000 | 3,250 | 6,500 | | Chemical treatment | 1 (1) | 3,000 | 3,000 | 3,000 | | Other | 5 (15) | 1,000 - 45,000 | 200 | 87,259 | | TOTAL | 209 (290) | ==0 | - | 11,960,049 | #### **SECTION 2: SUPERFUND REMOVAL ACTIONS** Superfund removal actions are conducted in response to an immediate threat caused by a release of hazardous substances. Removal action decisions are documented in an action memorandum. To date, innovative treatment technologies have been used in relatively few removal actions. The innovative technologies addressed in this report have been used 31 times in 26 removal actions (Figure 13). In addition, infrared incineration, no longer considered innovative, was first used at two removal actions. Many removals involve small quantities of waste or immediate threats requiring quick action to alleviate the hazard. Often, such activities do not lend themselves to on-site treatment approaches. In addition, SARA does not prescribe the same preference for innovative treatment for removals that it does for remedial actions. EPA would like to increase the use of innovative treatment methods to address removal problems. One of the seven initiatives set forth in the EPA directive described in the foreword concerns removal actions. It is expected that innovative treatment technologies will be used more often in the future, for larger, and less time-critical removal actions. Table B-1 in Appendix B provides detailed information for each application of an innovative technology at a removal site. The summary matrix presents summaries by EPA Region and status for all applications of innovative technologies at removal sites. #### Frequency of Technology Selection Figure 13 lists each type of innovative treatment technology and indicates how often that technology has been selected as a remedy for removal actions. Figure 13 illustrates that chemical treatment was selected most often and represented 23 percent of all applications of innovative treatment technologies at removal sites. Bioremediation (ex situ) was chosen six times and represented 19 percent of all applications of innovative treatment technologies at removal sites. #### **Status of Innovative Technology Implementation** Figure 14 indicates the status of innovative treatment technologies that are being applied at removal action sites. Since removals are responses to an immediate threat and often involve smaller quantities of hazardous wastes than remedials, the implementation of the technology may progress faster at a removal site than at a remedial site. The figure indicates that a large percentage, 58 percent, of removal projects involving innovative treatment technologies have been completed. The Summary Matrix provides information on removal action sites using innovative treatment technologies by status and specific technology. Table E-2 in Appendix E provides detailed information on removal projects that have been completed. FIGURE 14 SUPERFUND REMOVAL ACTIONS: PROJECT STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF SEPTEMBER 1994* | Technology | Predesign/
In Design | Design Complete/ Being
Installed/Operational | Project
Completed | Total | |----------------------------|-------------------------|---|----------------------|-------| | Soil Vapor Extraction | 0 | 1 | 3 | 4 | | Thermal Desorption | 0 | 1 | 1 | 2 | | Ex Situ Bioremediation | 1 | 2 | 3 | 6 | | In Situ Bioremediation # | 0 | 1 | 3 | 4 | | Soil Washing | 0 | 1 | 1 | 2 | | In Situ Flushing | . 0 | 0 | 0 | 0 | | Dechlorination | · 0 | 0 | 2 | 2 | | Solvent Extraction | 0 | 0 | 2 | 2 | | In Situ Vitrification | 0 | 1 | 0 | 1 | | Other Innovative Treatment | 0 | 1 | 0 | 1 | | Chemical Treatment | 0 | 1 | 6 | 7 | | TOTAL | 1 (3% | %) 9 (29%) | 21_(68%) | 31 | Data derived from a survey of EPA Superfund Removal Branch Chiefs and On-Scene Coordinators for each Region. [#] Includes one in situ groundwater treatment. ### Contaminants Addressed by Innovative Treatment Technologies Figure 15 provides information, by technology, for three major contaminant groups treated at removal action sites: volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and metals. For this report, compounds are categorized as VOCs or SVOCs, using the lists provided in EPA's SW-846 Test Methods 8240 and 8270, respectively. #### **Treatment Trains** Innovative treatment technologies in this report may be used together with established or other innovative treatment technologies in treatment trains. Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. Table
E-5 in Appendix E lists the sites at which such treatment trains are being used. # SECTION 3: ACTIONS UNDER OTHER FEDERAL PROGRAMS This chapter contains available information on projects conducted under other federal programs that are not part of the Superfund program (non-Superfund sites). Many of these projects take place at DoD and DOE facilities. Many of the DoD projects are funded by the Defense Environmental Restoration Program (DERP), which includes the installation restoration program (IRP) and the formerly used defense sites (FUDS) program in DoD. These sites were identified through various sources of information, including discussions with DoD and DOE personnel. However, this list of sites should not be considered comprehensive. This chapter contains information on the application of innovative technologies at 28 non-Superfund sites. Figure 16 lists each type of innovative treatment technology and the number of times it has been selected as a remedy at a non-Superfund site. Figure 17 indicates the status of innovative technologies being applied at non-Superfund sites. The Summary Matrix provides information on each application by status and EPA Region. Table C-1 in Appendix C provides detailed information on each application. Table E-3 in Appendix E lists details on completed applications. # FIGURE 16 *SAMPLE OF PROJECTS UNDER OTHER FEDERAL PROGRAMS: SUMMARY OF TREATMENT TECHNOLOGIES AS OF JUNE 1994* (Total Number of Technologies = 28) Note: Data are derived from a survey of U.S. Army Corps of Engineers sites and projects listed in the Synopses of Federal Demonstrations of Innovative Site Remediation Technologies, Second Edition EPA/542/B-92/003. More than one technology per site may be used. - Number of times this technology was selected or used. - "Other" innovative technologies are air sparging and contained recovery of oily wastes. - Inclusion in situ groundwater treatment remedies. FIGURE 17 SAMPLE OF PROJECTS UNDER OTHER FEDERAL PROGRAMS: STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF SEPTEMBER 1994* | Technology | Predesign/
In Design | Design Complete/ Being Installed/Operational | Project
Completed | Total | |----------------------------|-------------------------|--|----------------------|-------| | Soil Vapor Extraction | 5 | 5 | 1 | 11 | | Thermal Desorption | 0 | 0 | 0 | 0 | | Ex Situ Bioremediation | 0 | 2 | 3 | 5 | | In Situ Bioremediation# | 0 | 6 | 2 | 8 | | Soil Washing | 0 | 1 | 1 | 2 | | In Situ Flushing | 0 | 0 | 0 | 0 | | Dechlorination | 0 | 1 | 0 | 1 | | Solvent Extraction | 0 | 0 | 0 | 0 | | In Situ Vitrification | 0 | 0 | . 0 | 0 | | Other Innovative Treatment | 0 | 1 | 0 | 1 | | Chemical Treatment | 0 | 0 | .; O | 0 | | TOTAL | 5 (18%) | 16 (57%) | 7 (25%) | 28 | ^{*} Data derived from a survey of EPA Superfund Removal Branch Chiefs and On-Scene Coordinators for each Region. Also includes in situ groundwater treatment. | | | | | ****** | · | - | | ~~~~ | ******* | | ************ | | | | | | |--------|---------------------------------------|--------|----------|------------|--------|--|------------|---------------|-------------|------|--------------|------------------|------------|----------|-------------------|---| | | | | | | | _ | 7 | | | | Tech | inology | / Type | | | (| | | | , | | | | |) — | | _ | _ | 7 | | <u> </u> | _ | /// | _ | | | Region 1 | | | | , | | | | | | | | | | | | | | | | | | | in sin | | S. Sent | / . | | ion | eiton | | | ight | | | | | | | , | | ion | ion / | PARTI | don . | hine | fical | esting. | St. / | Special | 5 ⁵³ / | | | | | | | | Stroil | Redita | riter | Social | A COLOR | 141 | 7.020 | Nagh | III ET | Rail | | | | Region | Site Name, State | Status | Action | / * | ige & | garden de la constanta c | iger let s | Pediliding. | in Situ Phi | | School Sept | CARROLLIA SERIES | object for | 40/ | ggt. | | | 1 | Kellogg-Deering Well Field, CT | D | Remedial | | | | | <u> </u> | | • | | | | | | | | 1 | Linemaster Switch Corporation, CT | PD | Remedial | | | | | | | • | | | | | | | | 1 | Silresim, MA | I | Remedial | | | | | | | • | | | | | | | | 1 | Iron Horse Park, MA | 0 | Remedial | | • | | | | | | | | | | | | | 1 | Re-Solve, MA | 0 | Remedial | | | | | | | | | | • | | | | | 1 | Norwood PCBs, MA | D | Remedial | | | | | | | | | • | | | | | | 1 | Cannon Engineering/Bridgewater, MA | С | Remedial | | | | | | | | | | • | | | | | 1 | Groveland Wells, MA | 0 | Remedial | | | | | | | • | | | | | | | | 1 | Wells G&H OU 1, MA | 0 | Remedial | | | | | | | • | | | | | | | | 1 | Hocomonco Pond, ESD, MA | I | Remedial | • | | | | | | | | | | | | | | 1 | Union Chemical Co., OU 1, ME | D | Remedial | | Ĺ | | | | | • | | | | | | | | 1 | O'Connor, ME | D | Remedial | | | | | | | | | • | | <u> </u> | | | | 1 | McKin, ME | С | Remedial | | | | | | | | | | • | | | | | 1 | Mottolo Pig Farm, NH | 0 | Remedial | | | | | | | • | | | | | | | | 1 | South Municipal Water Supply Well, NH | I | Remedial | | | | | | | • | | | | ● a | | | | 1 | Tinkham Garage (OU 1), NH | D | Remedial | | | | | | | • | | | | | | | | 1 | Ottati & Goss, NH | С | Remedial | | | | | | | | | | • | | | | | 1 | Tibbetts Road, NH | PD | Remedial | | | | | | | • | | | | | | • | | 1 | Stamina Mills, RI | PD | Remedial | | | | | | | • | | | | | | | | 1 | Picillo Farm Site, RI | PD | Remedial | | | | | | | • | | | | | | | | 1 | Peterson/Puritan Inc. (OU 1), RI | PD | Remedial | | | | | | | • | | | | • | | | | | | | — · | | 1010 | 6J \ | | TITES. | -y - | viat. | LIA | | | | | | | |--------|---|--------|----------|-----|-------|---|--|----------|----------|-------------|-------|-------------|--|------------|-----------------|---|--| | | | | | | | | <u>, </u> | |
 | | | | | | | | | | Agus sinin | | | | | | | | | | Tec | hnolog | у Туре | ; | | | | | | Pagion 2 | | | | | | | / | | | / | // | / | | // | | | | | Region 2 | | | | | | | | | | | 65 | , / | | | | | | | /116 2 | | | | | ide de la | Specifical Specifical | atticit | /s / | String Vill | aiton | Carried St. | and the state of t | tion | September 1 | | | | | 146 | | | | J ist | do die | | Schlein! | iden die | STILL STA | | Scil Washi | and the | Steel 1 | 5 ³⁵ | | | | | | | | /// | CRUIT | . Cr. III | Sellif. | cide | Sitt | Siri | 31/34 | 11 48° | Nail | erities. | zi / | | | | Region | Site Name, State | Status | Action | | | | | | 4 | | | | | ~ / | 0,//// | | | | 2 | A O Polymer, Soil treatment phase, NJ | D | Remedial | | | | | | | • | | | | | | | | | 2 | Swope Oil & Chem Co., OU 2, NJ | D | Remedial | | | | | | | • | | | | 1 | | | | | 2 | FAA Technical Center, NJ | I | Remedial | • | | | | | | • | | | | | | | | | 2 | Myers Property, NJ | D | Remedial | | | | • | | | | • | | | | | | | | 2 | Lipari Landfill (OU 2), NJ | 0 | Remedial | | | | | • | | | | | | | | | | | 2 | Vineland Chemical, OU 1 and OU 2, NJ | D | Remedial | | | | | • | | | • | | | | | | | | 2 | King of Prussia, NJ | С | Remedial | | | | | | | | • | | | | | | | | 2 | Metaltec/Aerosystems, OU 1 - Soil Treatment, NJ | 0 | Remedial | | | | | | | | | | • | | | | | | 2 | Reich Farms, NJ | D | Remedial | | | | | | | | | | • | | | | | | 2 | Waldick Aerospace Devices (OU 1), NJ | С | Remedial | | , | | | | | | | | • | | | | | | 2 | South Jersey Clothing, NJ | D | Remedial | | | | | | | • | | | | | | | | | 2 | Garden State Cleaners, NJ | 0 | Remedial | | | | | | | • | | | | | | | | | 2 | Lipari Landfill Marsh Sediment, NJ | 1 | Remedial | | | | | | | | | | • | | | | | | 2 | Industrial Latex, OU 1, NJ | PD | Remedial | , | | | | | | | | | • | | | | | | 2 | Vineland Chemical, NJ | С | Removal | | | • | | | | | | | | | | | | | 2 | Zschiegner Refining Company, NJ | С | Removal | | | • | | | | | | | | | | | | | 2 | Universal Oil Products, NJ | D | Remedial | | | | | | | | | | • | | | , | | | 2 | Naval Air Engineering Center, OU 23, NJ | D | Remedial | L. | | | | | | • | | | | | | | | | 2 | Circuitron Corporation, OU 1, NY | D | Remedial | | | | | | | • | | | | | | | | | 2 | Mattiace Petrochemicals Company, OU 1, NY | PD | Remedial | | | | | | | • | | | | | | | | | 2 | Applied Environmental Services, OU 1, NY | DЛ | Remedial | • | | | | | | • | | | | ● a | | | | | | | | omu 1 | | | <u> </u> | / L | | <u> </u> | · · · · · · · · · · · · · · · · · · · | IIA | | | | | | | |--------|--|--------|----------|---|---------|-------------|------------|----------|----------|---------------------------------------|----------|------------------|---------|---------------|--------------|-----|--| | | | | | | | | <u> </u> | | | | | | | | | | | | | A SAROMANAS I TO S | | | | | | | | | | Tec | hnolog | у Туре | | | | | | | Region 2 | | | | | /// | | | | | / / | // | | / / | | // | | | | A 108-011 2 | | | | | , siri | Series of | al Chi | | | , cet | iton | | /_ | ion | / / | | | | Called the State of o | | | | | dou (| on C | Schlein? | rice Ph | hine | fication | ET. ER | es / | TacitO | A SOLVE | | | | | 1857 S. C. | | | | a troit | in die | dival | histo | in the | 10 10 | 7.36 | N age | STI (2) | Tal | | | | | Region | Site Name, State | Status | Action | / | id P | sen in just | 78 / S | | II 3 | signal viet | şil / | Street of Street | ab to | ther | Secretary of | | | | 2 | Genzale Plating Company, OU 1, NY | D | Remedial | | | | | | | • | <u> </u> | | | <u> </u> | | | | | 2 | Signo Trading/Mt. Vernon, NY | С | Removal | | | | • | | | | | | | | | | | | 2 | Wide Beach Development, NY | С | Remedial | | | | • | | | | | | i | | | | | | 2 | Byron Barrel & Drum, NY | PD | Remedial | | | | | • | | | | | l | | 1 | | | | 2 | American Thermostat, NY | 0 | Remedial | | | | | | | | | 1 | • | | | | | | 2 | Fulton Terminals, Soil Treatment, NY | D | Remedial | | | | | | | | | | • | | 1 | | | | 2 | Sarney Farm, NY | D | Remedial | | | | | | | | | | • | | | | | | 2 | SMS Instruments (Deer Park), NY | С | Remedial | | | | | | | • | | | | | 1 | | | | 2 | Vestal Water Supply 1-1, NY | D | Remedial | | | | | | | • | | | | | | | | | 2 | Claremont Polychemical - Soil Remedy, NY | Ď | Remedial | | | | | | | | | | • | | | | | | 2 | Solvent Savers, NY | PD | Remedial | | | | | | | | | | • | | | | | | 2 | Applied Environmental Services (Groundwater), NY | I | Remedial | • | | | | | | | | | | | | | | | 2 | General Motors/Central Foundry Div., OU 2, NY | D | Remedial | | • | | | | | | | | | | | | | | 2 | General Motors/Central Foundry Div., OU 1, NY | D | Remedial | | • | | | | | | | | | | | | | | 2 | Pasley Solvents and Chemicals, Inc., NY | D | Remedial | | | | | • | | • | | | | | | | | | 2 | GCL Tie and Treating, NY | D | Removal | | • | | | | | | | | | | | | | | 2 | Reynolds Metals Co. Study Area Site, (RMC), NY | D | Remedial | | | | | | | | | | • | | | | | | 2 | GE Wiring Devices, PR | D | Remedial | | | | | | | | • | | | | | | | | 2 | Upjohn Manufacturing Co., PR | С | Remedial | | | | | | | • | | | | | | 7 | | | 2 | Janssen Inc., PR | I | Remedial | | | | | | | • | | | | | | | | | | | | | | | B V 1 | | | | | | | | | | |--------|---|--------|----------|----------|----------|--------------|-----------|---------------|-------------|--|----------------|-----------------|------------|--------------|--| | | | | | | | / | 厂 | | | —————————————————————————————————————— | Tech | nnology | у Туре | | | | | Region 3 | | | / | , redit | ide die | gen et si | il least tent | gen fru | Single View | Secretary 1950 | College College | Solven Co | spiriter T | ger de la companya | | Region | Site Name, State | Status | Action | 1// | Sion P |
Sign | 'HE' | | NZ/ | 75 C | oil o | soil/c | di | 140 | - FET | | 3 | Delaware Sand and Gravel, DE | PD | Remedial | • | | | | ſ | | | <u> </u> | | | | | | 3 | Cryochem, OU 3, PA | D | Remedial | | | | | | | • | | | | | | | 3 | Whitmoyer Laboratories, OU 3, PA | D | Remedial | | • | | | | | | | | | | | | 3 | U.S.A. Letterkenny SE Area, OU1, PA | 0 | Remedial | | | | | | | | | | • | | | | 3 | Bendix, PA | PD | Remedial | | | | | | | • | | | | | | | 3 | Lord-Shope Landfill, PA | D/I | Remedial | I | | | | | | • | | | | | | | 3 | Tyson's Dump, PA | 0 | Remedial | | | | | | | • | | | | | | | 3 | Brodhead Creek, OU 1, PA | I | Remedial | | | <u> </u> | | | | | | <u> </u> | <u> </u> | • c | | | 3 | Tonolli Corporation, PA | PD | Remedial | | | <u> </u> | <u> </u> | | | | | ļ | <u> </u> | ● b | | | 3 | Raymark, PA | 0 | Remedial | | | | <u> </u> | | | • | | ļ | lacksquare | . | | | 3 | Brown's Battery Breaking Site, OU 2, PA | PD | Remedial | | | | | | | <u> </u> | | ļ | <u> </u> | ⊕ b,d | | | 3 | Saegertown Industrial Area Site, PA | D | Remedial | | | | | | | • | ļ | Ļ | ↓ | ● a | | | 3 | William Dick Lagoons, OU 3, PA | PD | Remedial | <u> </u> | <u> </u> | <u> </u> | | | ļ | | ļ | ↓ | | L | | | 3 | Arrowhead Associates/Scovill, OU 1, VA | PD | Remedial | ļ., | | <u> </u> | | | | • | | <u> </u> | <u> </u> | <u> </u> | | | 3 | Saunders Supply Co, OU 1, VA | D | Remedial | | 1 | | • | L | | <u> </u> | ļ | | • | ! | | | 3 | Avtex Fibers, VA | С | Removal | <u> </u> | <u> </u> | • | <u> </u> | <u> </u> | | <u> </u> | ļ | ļ | <u> </u> | <u> </u> | | | 3 | Defense General Supply Center, OU 5, VA | С | Remedial | ļ | <u> </u> | <u> </u> | | | <u> </u> | • | | | | ļ | | | 3 | Langley AFB, IRP Site 28, VA | I | Other | _ | <u> </u> | <u> </u> | ļ | | <u> </u> | • | ! | ļ | ↓ | <u> </u> | | | 3 | Rentokil, VA | D | Remedial | 1 | | | ļ | | | <u> </u> | ↓ | | • | <u> </u> | | | 3 | Ordnance Works Disposal Areas, WV | D | Remedial | | • | | |] | <u></u> | <u> </u> | <u> </u> | | l | <u> </u> | V . | | | DIC D | u tu | and it | -C111 | 1010 | 5 J \ | <i></i> | шца | <u>. y</u> 1 | VICE | LIA | | | | | |----------|---|--------|-------------------|----------|------------------|--------------|-----------|-----------|--------------|------------|---------|--------------------|----------|-----------|--| | | | | | | | / | 厂 | | | | Tecl | nnology | у Туре | | | | | Region 4 | | | | jeder te die die | gor in sit | Series of | resident. | iden fri | aline viet | Steakon | Control of Control | side for | stritor . | get of the state o | | Region | Site Name State | | A -A ² | | igrefited | iterestical | Te fricas | edito in | in Sittle | Sitil | di Jaga | CARTO C | olvent E | Terrial. | Sift. | | <u> </u> | Site Name, State | Status | Action | | <u> </u> | _ | | _ | _ | | | | | _ | 4 | | 4 | Ciba-Geigy (MacIntosh Plant) OU 2, AL | PD | Remedial | | | | | • | | | | | • | <u> </u> | | | 4 | Ciba-Geigy (MacIntosh Plant) OU 4, AL | PD | Remedial | | | | <u> </u> | • | | | | | • | | | | 4 | Brown Wood Preserving, FL | С | Remedial | | • | | | | | | | | | <u> </u> | | | 4 | Dubose Oil Products, FL | 0 | Remedial | | • | | | | | | | | | <u> </u> | | | 4 | Cabot Carbon/Koppers, FL | D | Remedial | • | • | ļ | | | | | • | ļ | | <u> </u> | | | 4 | Whitehouse Waste Oil Pits (amended ROD), FL | D | Remedial | <u> </u> | • | | | | | | • | | | | | | 4 | Hollingsworth Solderless, FL | С | Remedial | <u> </u> | ļ | Ļ | | | | • | | ļ | | ļ | | | 4 | Peak Oil/Bay Drums OU 1, FL | PD | Remedial | • | | | | • | | | | <u> </u> | | | | | 4 | Robins AFB, Landfill / Sludge Lagoon, OU 1, GA | PD | Remedial | <u> </u> | | | | | <u> </u> | • | | | | | | | 4 | General Refining, GA | С | Removal | | | | , | | <u></u> | | L_ | • | | | | | 4 | Basket Creek Surface Impoundment, GA | С | Removal | | | | | | | • | | | | | | | 4 | Mathis Brothers - S. Marble Top Road Landfill, GA | D | Remedial | | • | | | | | | | | | | | | 4 | Smith's Farm Brooks, OU 1, KY | 0 | Remedial | | | | • | | | | | | • | | | | 4 | Southeastern Wood Preserving, MS | С | Removal | L | • | | | | | | • | | | | | | 4 | Charles Macon Lagoon, Lagoon #7, OU 1, NC | D | Remedial | | | | | | | • | | | | | | | 4 | Aberdeen Pesticide Dumps, (OU 1 & OU 4), NC | PD | Remedial | | | | | | | | | | • | | | | 4 | JADCO-Hughes, NC | D | Remedial | | | | | • | | • | | | | | | | 4 | Carolina Transformer, NC | D | Remedial | | | | | | | | | • | | | | | 4 | Cape Fear Wood Preserving, NC | DΛ | Remedial | | • | | | | | | • | | | | | | 4 | Benfield Industries, NC | D | Remedial | | • | | | | | | | | | | | | 4 | Potter's Septic Tank Service Pits, NC | D | Remedial | | | | | | I | | | | • | | | | 4 | JFD Electronics/Channel Master, NC | D | Remedial | | | • | | | | | | | | | | | | | | | | _ | | | | • | | | | | | | | | |--------|---|--------|----------|----|-------------|-------------|----------|-------------|-----------|------|------------|-----------------|-----------|----------------|------------|----|---| | | | | | | | // | | | | | Tec | hnolog | у Туре | | | | | | | Region 4 | | | | / | (d) | er en | d then | | | sitor | action . | | itan | dict | | | | | | | | // | of entering | ider ide id | il et il | Tradition 1 | A SHIP | Sitt | Sell Angel | Control of Self | govern of | Secretary. | Services . | | | | Region | Site Name, State | Status | Action | | | <u> </u> | | | <u>"/</u> | | | | | <u> Z</u> | | | | | 4 | FCX-Washington Site, NC | I | Removal | | | | | | | | | | • | | | | | | 4 | USMC Camp Lejeune Military Base, OU 2, NC | D | Remedial | | | | | | | • | | | | | | | | | 4 | Hinson Chemical, SC | С | Removal | | | | | | | • | | | | | | | | | 4 | SCRDI Bluff Road, SC | D | Remedial | | | | | | | • | | | | | | | | | 4 | Medley Farm, OU 1, SC | D/I | Remedial | | | | | | | • | | | | | | | | | 4 | Wamchem, SC | С | Remedial | | | | | | | | | | • | | | | | | 4 | Sangamo/Twelve-Mile/Hartwell PCB, OU 1, SC | D | Remedial | | | | | | | | | | • | | | | , | | 4 | Savannah River DOE, M Area Settling Basin, SC | 0 | Other | • | | | | | | • | | | | ● ⁸ | | | | | 4 | CSX McCormick Derailment Site, SC | С | Removal | • | | | | | | • | | | | | | | | | 4 | Rochester Property, SC | PD | Remedial | | | | | | | | | | | ● 8 | | | | | 4 | Helena Chemical, SC | D | Remedial | | • | | • | | | | | | | | | | | | 4 | Para-Chem Southern, Inc., SC | PD | Remedial | | • | | | | | | | | | | | | | | 4 | Arlington Blending & Packaging Co., OU 1, TN | D | Remedial | | | | l | | | | | | • | | | ē. | | | 4 | Carrier Air Conditioning, TN | D/I | Remedial | | | Ĺ | I | | | • | | | | | | | | | | | | omu i | - CIII | 1010 | '5J \ | <i>-</i> | 411161 | 1 y 1 | 7141 | IIA | | | | | | |--------|---|--------|----------|--------|--------|--|--------------|---|--------------|-------------|-----------|-------------------|-----------|------------|--------------------|---| | | Region 5 | | | | | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | | المار الم | | | 7 | hnolog | / | | | | | | | | | // | Remons | ide de la ser | a junt et et | al
Reddering | iton and | ding in | sil vegot | Christian Control | Street by | distribut. | georgical
Gusti | | | Region | Site Name, State | Status | Action | 7 | | | | 7/ ' | D A | | S'/ | ء مرجود | 301/ | | an/ | | | 5 | Galesburg/Koppers, IL | D | Remedial | | • | | | | | | | | ſ | | | | | 5 | Outboard Marine/Waukegan Harbor, OU 3, IL | С | Remedial | | | <u> </u> | | | | | | 1 | • | 1 | | | | 5 | Acme Solvent Reclaiming, Inc. OU 3 & OU 6, IL | D | Remedial | | | | | | | • | | Î | • | " | | | | 5 | Enviro. Cons. and Chem. (ROD Amend), IN | D |
Remedial | | | | | | | • | | | | | | | | 5 | Main Street Well Field, IN | D | Remedial | | | | | | | • | | | | | | | | 5 | Seymour Recycling, IN | С | Remedial | • | | | | | | • |) | | | | | | | 5 | Fisher Calo Chem, IN | D | Remedial | L | | | | | | • | | Ì | | | | | | 5 | MIDCO I, IN | PD | Remedial | | | | | | | • | | | | | | | | 5 | Wayne Waste Reclamation, IN | D/I | Remedial | | | | | | | • | | | 1 | | | | | 5 | Seymour Recycling (Ground water), IN | 0 | Remedial | • | | | | | | | | | | | | | | 5 | MIDCO II, IN | PD | Remedial | | | | | | | • | | | | | | | | 5 | American Chemical Services, IN | PD | Remedial | | | | | | | • | | | • | | | | | 5 | Indiana Wood Treating, IN | 0 | Removal | | • | | | | | | | | | | | | | 5 | Reilly Tar and Chemical, IN | PD | Remedial | | | | | | | | | | • | | | | | 5 | Ninth Avenue Dump, IN | С | Remedial | | | | | • | | | | | <u> </u> | | | | | 5 | Carter Industries, MI | D | Remedial | | | | | | | | | | • | | | | | 5 | Sturgis Municipal Well Field, MI | PD | Remedial | | | | | | | • | | | | | | | | 5 | Chem Central, MI | D | Remedial | | | | | | | • | | | | | | | | 5 | ThermoChem, Inc. OU 1, MI | D | Remedial | | | | | | | • | | | | | | 7 | | 5 | Verona Well Field, OU 2, MI | 0 | Remedial | | | | | | | • | | | | † | | • | | 5 | Anderson Development (ROD Amendment), MI | С | Remedial | | | | | | | | 1 | | • | | | | | | | | | | | <u> </u> | | | - <i>J</i> - | | | | | | | |--------|---|--------|----------|--|--|---|--|-----------|--|--|--|--|--|--|--| | | Region 5 | 7 | | / | /
/ js! | ight in the state of | Select of | , esterie | iger fri | Shires Virt | // | hnolog
turbud | 7 | | A CONTRACTOR OF THE PROPERTY O | | Region | Site Name, State | Status | Action | (/« | Side City | SICKOUT | Mend | Scritt's | II SIM | n sjiri | oil | gilar | divor | THOTEL | Sit | | 5 | Cliffs/Dow Dump, MI | D | Remedial | | (_ | $\overline{}$ | / | _ | | (| \leftarrow | (| / | / | | | 5 | PBM Enterprises (Van Dusen Airport Service), MI | c | Removal | <u> </u> | - | • | | | <u> </u> | | | ļ . | | | | | 5 | Ionia City Landfill, MI | D | Remedial | | | - | - | | 0 | | \vdash | ├─ | ┡ | | | | 5 | Parsons Chemical (ETM Enterprise), MI | С | Removal | ├ | - | | | | 0 | | | | - | | | | 5 | Kysor of Cadillac Industrial, MI | D | Remedial | | | - | | | - | | | <u> </u> | - | | | | 5 | Springfield Township Dump, MI | D | Remedial | | | | | | | | | | - | | | | 5 | Verona Well Field (T. Solv/Raymond Rd), MI | С | Remedial | | | | | | - | | - | ╁ | | | | | 5 | Rasmussen Dump, MI | D | Remedial | | | | | | ╁ | – | | \vdash | ╁ | | | | 5 | Saginaw Bay Confined Disposal Facility, MI | c | Other | | | | ┢ | <u> </u> | | | • | | \vdash | | | | 5 | Electro-Voice, OU 1, MI | PD | Remedial | | 1 | | | | | • | - | | | | | | 5 | Clare Water Supply, MI | PD | Remedial | | | | | | | | | | | \vdash | | | 5 | Peerless Plating, MI | D | Remedial | | | | | | | | | | |
 | | | 5 | Duell-Gardner Landfill, MI | PD | Remedial | 1 | | - | | | | Ť | | | • | † | | | 5 | Ott/Story/Cordova Chemical, MI | D | Remedial | | | | | | | | | | • | | | | 5 | Burlington Northern RR Tie Treating Plant, MN | o | Remedial | | • | | | | | | | | | | | | 5 | Joslyn Manufacturing and Supply Co., MN | 0 | Remedial | | • | | | | | | | <u> </u> | | | | | 5 | Twin Cities Army Ammunition Plant, MN | 0 | Remedial | | | | t | | <u> </u> | | • | <u> </u> | | | | | 5 | Long Prairie Groundwater Contamination, MN | D/I | Remedial | † | | | | | | • | | | 1 | | | | 5 | Allied Chem & Ironton Coke, OU 2, OH | D | Remedial | • | • | | ${\mathsf T}$ | | | | | | 1 | •f | | | 5 | Zanesville Well Field, OH | PD | Remedial | † | | | | | \vdash | | • | t | | | | | 5 | Zanesville Well Field, OH | D | Remedial | | | | | | | • | | | | | | | | Ditt 5 | | cana i | o Cili. | ·OIO | 6 J - | <i>,</i> | LILLOS | • J • · | 144 U | 424 | | | | |--------|--|--------|----------|---------|--------|--------------|---------------|------------|----------|--------------|-------|----------------------|-------|-----------| | | Region 5 | | | | , gade | ige (d) | Secret Secret | ratiferi . | iger ha | gigle viet | | anology
istration | | god die o | | Region | Site Name, State | Status | Action | \/* | 10 | io | 3 | 50 | 1 | 3/9 | Oly C | ع المع | ol. V | set / | | 5 | Pristine (ROD Ammendment), OH | 1 | Remedial | | | | | | | • | | | | | | 5 | Pristine (ROD Ammendment), OH | С | Remedial | | | | | | | Ï | | | • | | | 5 | Miami County Incinerator, OH | D | Remedial | | | | | | | • | | | | | | 5 | Skinner Landfill, (002), OH | PD | Remedial | | | | | | | • | | | | | | 5 | Muskago Sanitary Landfill, WI | DЛ | Remedial | | | | | | | • | | | | | | 5 | Wausau Groundwater Contamination | 0 | Remedial | | | | | | | • | | | | | | 5 | Moss American, WI | PD | Remedial | | • | | | | | | | | | | | 5 | Moss American, WI | PD | Remedial | | | | | | | | • | | | | | 5 | Hagen Farm Site, Ground water, WI | D | Remedial | • | | | | | | | | | | | | 5 | Hagen Farm Source Control OU, WI | 0 | Remedial | | | | | | | • | | | | | | 5 | Onalaska Municipal Landfill, WI | 0 | Remedial | • | | | | | | | | | | | | 5 | City Disposal Corporation Landfill, WI | PD | Remedial | | | | | | | • | | | | | | | | | | | ~~~~ | OV - | | | √ _ | | | | | | | |--------|---|--------|----------|---|-----------|-----------------------------|---|-------------|------------|----------|-------------|---------------------------------------|------------|----------|--| | | | | | | | / | Œ | | | | Tecl | inology | у Туре | <u> </u> | | | | Region 6 | | | 1 | , section | der Lieuse
Joseph Lieuse | Special of | Radineria. | idel fin | sint vid | Secretary 1 | Survey Series | Street Ext | socion (| gerden de la companya | | Region | Site Name, State | Status | Action | | Signer & | HOTEL | Section (| | II SIL | | oil | | Shor Y | Hall | si ^t . | | 6 | Arkwood, AR | D | Remedial | | ſ | f | | | | | | | | | 1 | | 6 | MacMillan Ring Free Oil Company, AR | ı | Removal | | • | | | | | | | | | - | | | 6 | Popile, AR | PD | Remedial | • | • | 1 | | | | | | | | | | | 6 | Old Inger Oil Refinery, LA | 0 | Remedial | | • | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | 6 | Pab Oil & Chemical Services, LA | PD | Remedial | | • | | | | | | | | | | | | 6 | American Creosote Works, Inc. (Winnfield), LA | D/I | Remedial | • | | 1 | | | | | | | | | | | 6 | Atchison/Santa Fe/Clovis, NM | 0 | Remedial | • | | | | | | | | | | | | | 6 | Prewitt Abandoned Refinery, NM | PD | Remedial | | • | | | | | • | | | | • a | | | 6 | Holloman AFB, Main POL Area, NM | D | Other | | | | | | | • | | | | | | | 6 | Holloman AFB, BX Service Station, NM | D | Other | | | | | | | • | | | | | | | 6 | Traband Warehouse, OK | С | Removal | | | | | | | | | • | | | | | 6 | Oklahoma Refining Co., OK | D | Remedial | • | • | | | | | | | | | | | | 6 | Petro-Chemical Systems, Inc., OU 2, TX | PD | Remedial | | | | | | | • | | | | • a | | | 6 | North Cavalcade Street, TX | D | Remedial | | • | | | | | | | | | | | | 6 | Sheridan Disposal Services, TX | PD | Remedial | | • | | | | | | | | | | J | | 6 | French Limited, TX | С | Remedial | • | | | | | | | | | | | | | 6 | South Cavalcade Street, TX | PD | Remedial | | | | | • | | | • | | | | | | 6 | Koppers/Texarkana, TX | D | Remedial | | | | | • | | | • | | | | | | 6 | United Creosoting, TX | DΛ | Remedial | | | | | | | | | • | | | | | 6 | Kelly AFB, Site 1100, TX | 0 | Other | • | | | | | | • | | | | | | | 6 | Matagorda Island AF Range, TX | С | Other | | • | | | | | | | | | | | | 6 | Baldwin Waste Oil, TX | С | Removal | • | | | | | | | | | | | | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification | | Site Si | alus | anu 16 | CHI | OIO | 5) L | , CALLL | 11141 | y 10 | 144 | 174 | | | | |
 | |--------|--|--------|----------|----------|---------------------|--------------
--|---------------------------|----------|-----------|--------------|--------------|-----------|--|-------|-------| | | Region | 7 | 7 | | | | | | | | | nology | | | |
7 | | | | | | | Jest Baring Control | Service in | Special Specia | contraction of the second | ger Fre | Situ Vite | fication of | attraction S | special S | School of | stron | | | Region | Site Name, State | Status | Action | * | | | \angle | \mathbb{Z} | | | \angle | Z_{i}^{2} | | <u>Z</u> | | | | 7 | Vogel Paint & Wax, IA | 0 | Remedial | | ′• | | | | | | | | | | | | | 7 | People's Natural Gas, IA | DΛ | Remedial | • | <u> </u> | | | | | | | | | | | | | 7 | Chemplex (OU 2), IA | PD | Remedial | <u> </u> | | | | | | • | | | | | | | | 7 | McGraw Edison, IA | PD | Remedial | 1 | | ↓ | | | <u> </u> | • | | | | igwdapprox | | | | 7 | Coleman Operable Unit 29th and Mead, KS | PD | Remedial | ļ | | ļ | ļ | <u> </u> | | • | ļ | | | | | | | 7 | Pester Refinery Co., KS | PD | Remedial | • | <u> </u> | ↓ | <u> </u> | • | | | <u> </u> | | - | | | | | 7 | Scott Lumber, MO | С | Removal | 1 | • | Ь. | ├ | <u> </u> | | | | | | ├ | | | | 7 | Crown Plating, MO | С | Removal | <u> </u> | <u> </u> | ļ | • | | | | | | | | | | | 7 | Lee Chemical, MO | 0 | Remedial | <u> </u> | | <u> </u> | | • | | | ! | - | | <u> </u> | | | | 7 | Hastings GW Contamination (Colorado Ave), NE | D | Remedial | <u> </u> | ↓ | ↓ | . | \ | ↓ | • | ļ | | | | | | | 7 | Hastings GW Contamination (Far-Mar Co.), NE | D | Remedial | | <u> </u> | <u> </u> | <u> </u> | | ļ | | ļ | ļ.— | | | | | | 7 | Hastings GW Contamination, Well No. 3, NE | С | Remedial | <u> </u> | <u> </u> | <u> </u> | <u> </u> | ļ | | • | - | _ | | . | | | | 7 | Lindsay Manufacturing, NE | D | Remedial | | <u> </u> | <u> </u> | | <u> </u> | | • | ₩ | | | | | Ż | | 7 | Waverly Groundwater Contamination, NE | 0 | Remedial | <u> </u> | | | | | | • | | _ | _ | 1 | | | | 7 | Sherwood Medical, NE | PD | Remedial | | | | <u> </u> | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | _ • | <u> </u> | | | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification | | | | · · · · · · · · · · · · · · · · · · · | CIAL | | Ы , | / | | - J - | · | LIA | | | | | |--------|---|--------|---------------------------------------|----------|-------|------------|-------------|--------------|----------|------|------------|---|---------------|-------|--| | | | | | | | | <i>A</i> | Tecl | hnolog | у Туре | | | | | Region 8 | | | | | | | | // | // | // | // | | / / | | | | / 108,000 | _// | | | | 1,55 | A) John | | | | 1 | ide | | /. | | | | | | | | | Ordi | St. C. | California | ion | ding | Seattle . | CARGO | | dia | , 5 ⁸ | | | | | | | nedis | nedia | iten | Crite | N. C. IV | 111 | 27 3504 | a adhi | | Nal S | 7. / | | Region | Site Name, State | Status | Action | / | STORE | jord la si | Secretary S | rediffering. | iden fra | | Soil Veste | Caterories of Control | ally ent fait | Her | gg | | 8 | Sand Creek Industrial, OU 5, CO | 0 | Remedial | | ĺ | | | | | | | | • | | | | 8 | Sand Creek Industrial OU 1, CO | 0 | Remedial | | | | | | | • | | | | | | | 8 | Chemical Sales Company, OU 1, CO | D | Remedial | | | | 1 | | | • | | | | | | | 8 | Martin Marietta (Denver Aerospace), CO | D | Remedial | | ļ . | | | | | • | | Ť | • | | | | 8 | Rocky Mtn Arsenal OU 18, interim resp., CO | С | Remedial | | | | | | | • | | | | | | | 8 | Ft. Carson, CO | 0 | Other | • | | | | | | • | | | | | | | 8 | Rocky Flats OU 2, Interim Remedial Action, CO | 0 | Remedial | | | | | | | • | | | | | | | 8 | Broderick Wood Products OU 2, CO | 0 | Remedial | • | • | | | | | | | | | | | | 8 | Burlington Northern (Somers Plant), MT | 0 | Remedial | • | • | | | | | | | | | | | | 8 | Libby Ground Water Contamination, MT | 0 | Remedial | • | • | | | | | · | | | | | | | 8 | Former Glasgow AFB, MT | I | Other | | • | | | | | | | | | | | | 8 | Idaho Pole Company, MT | D | Remedial | • | • | | | • | | | | | | | | | 8 | Mouat Industries, MT | 0 | Removal | | | • | | | | | | | | | | | 8 | Montana Pole and Treating Plant, MT | PD | Remedial | • | • | | | • | | | ' | | | | | | 8 | Montana Pole/Treating (Ground water), MT | PD | Remedial | • | | | | | | | | | | | | | 8 | Wasatch Chemical, UT | С | Remedial | | • | | | | • | | | | | | | | 8 | Utah Power and Light/American Barrel, UT | PD | Remedial | | | | | | | • | | | | | | | 8 | Mystery Bridge Road/Highway 20, OU 2, WY | 0 | Removal | | | | | | | • | | | | • a | | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification | | Ditt Di | LES CAN | anu it | | 1010 | 6J ^ | | | - <i>J</i> - ` | | | | | | | | | |--------|---|---------|----------|----|-------------|------------|-----------|------------|----------------|---------------|------------
--|--------------|-----------|------|-----|----| | | | | | | | | <i></i> | | | | _ | | - | | | | -4 | | | | | | | | | | | | | Tech | nology | Type | | _ | , , | | | | Region 9 | 7 | | | Secretary S | Strict Str | Secured S | 2 Authorit | .et / | Single Single | regitor | States de la constante c | | Trotted C | | | | | | | | | | e media | Conedia | dical | Partie La | del Pri | city it | Asta | dition of the second | in eti fo | o trail | \$ / | | | | Region | Site Name, State | Status | Action | | 3 | | | | 2/3 | 1 | 27 6 | 8 C | <u> </u> | | 8/ | | | | 9 | Aua Fuel Farm, Aua Village, American Samoa, | 0 | Other | •_ | | | | | | | | <u> </u> | | | | | | | 9 | Indian Bend Wash, South Area, OU 1, AZ | D | Remedial | | | | | | | • | | | <u> </u> | | | | | | 9 | Gila River Indian Reservation, AZ | С | Removal | | | • | | | | | | | | <u> </u> | | | | | 9 | Stanford Pesticide #1, AZ | С | Removal | | | • | | | | | | <u> </u> | | <u> </u> | | | | | 9 | Motorola 52nd Street, AZ | D | Remedial | | | | | | | • | | Ļ | | ┞ | | | | | 9 | Phoenix-Goodyear Airport Area (N. & S. Fac), AZ | 0 | Remedial | | | | | | | • | | | ↓ | ļ | | | | | 9 | Luke AFB, AZ | С | Other | | | | | | | • | | | ↓ | <u> </u> | | | | | 9 | Davis Monthan AFB, Site 35, AZ | I | Other | • | | | <u> </u> | <u> </u> | | • | | . | <u> </u> | | | | | | 9 | Davis Monthan AFB, AZ | С | Other | • | |] | | L | | • | | <u> </u> | <u> </u> | ļ | | | | | 9 | Hassayampa Landfill, AZ | D | Remedial | | <u> </u> | | <u> </u> | | | • | <u> </u> | ↓ | ↓ | | | | | | 9 | Indian Bend Wash, AZ | D | Remedial | | | | <u> </u> | <u> </u> | | • | <u> </u> | ـــــــ | <u> </u> | └ | | | | | 9 | Williams AFB, (OU2), AZ | 0 | Remedial | • | <u> </u> | <u> </u> | ļ | | L | • | | ــــــ | Ļ | └ | | | | | 9 | National Semiconductor (Monolith Memories), CA | 0 | Remedial | | | | | | | • | | <u> </u> | ļ | ↓ | | | | | 9 | Spectra Physics, OU 1, CA | 0 | Remedial | | | <u> </u> | | | | • | | <u> </u> | | ₩. | | | | | 9 | J.H. Baxter, CA | D | Remedial | | • | | | | <u> </u> | <u> </u> | | | ↓ | <u> </u> | | | | | 9 | Koppers Company, Inc. (Oroville Plant), CA | D/I | Remedial | • | | | | | <u> </u> | | • | <u> </u> | | _ | | | | | 9 | Roseville Drums, CA | С | Removal | • | | | | <u> </u> | <u> </u> | | lacksquare | 1_ | 1 | ↓ | | | | | 9 | Solvent Service, CA | 0 | Remedial | | <u> </u> | | <u> </u> | <u> </u> | | • | <u> </u> | — | ↓_ | ↓ | | | | | 9 | Fairchild Semiconductor (San Jose), CA | С | Remedial | | | | | <u> </u> | <u> </u> | • | ↓ | _ | ↓_ | ↓ | | | | | 9 | Fairchild Semiconductor/MTV-I, CA | DЛ | Remedial | | | | | | | • | <u> </u> | . | | _ | | | | | 9 | Fairchild Semiconductor/MTV-II, CA | D/I | Remedial | | | | | | | • | <u> </u> | | ļ | | | | | | 9 | IBM (San Jose), CA | 0 | Remedial | | | | <u> </u> | <u> </u> | 1 | | <u> </u> | | | | | | | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification | | | ***************** | -5 4114 3 | ********** | | 6 5 | | | J | TATE | 461 1. | <u> </u> | | | | | |--------|--|-------------------|-----------|-------------|-----------|--|--|--|--|--|--|--|--|--|---------------------------------------|---| | | Region 9 | | | | age state | igate lets | Cherical Control | Treatget
Treatget | digital fri | stiff of the state | | chnolog
chrocio
chrocio | 7 | | g g g g g g g g g g g g g g g g g g g | | | Region | Site Name, State | Status | Action | / \$ | OC. | Siore | Cherry | Dell. | In Sir | IL SIL | joil / | وأأثي | SOINE | THOU | Origet | | | 9 | Intel, Mountain View, CA | D | Remedial | | | (| / | (| / - | - | \leftarrow | / | / | / | 1 | | | 9 | Intersil/Siemens, CA | 0 | Remedial | _ | _ | | | ├─ | | | + | - | | ┢ | | | | 9 | Raytheon, Mountain View, CA | D | Remedial | \vdash | | | | ┼ | ┼ | - | | | - | + | | | | 9 | Watkins-Johnson, CA | <u> </u> | Remedial | | _ | _ | | | ├ | - | - | | ├ | - | | | | 9 | Monolithic Memories/AMD - Arques, SU 2, CA | 0 | Remedial | | | | ╁┈┈ | | | - | ┼ | | ├ | | | | | 9 | Van Waters and Rogers, CA | 0 | Remedial | \vdash | - | | \vdash | ┼─ | ┼╌ | Ť | ╁ | | ╁ | - | | | | 9 | Pacific Coast Pipeline, CA | D | Remedial | | | | | | \vdash | - | - | | | _ | | | | 9 | Sacramento Army Depot, Tank 2 OU, CA | С | Remedial | | | | - | | | | ╫ | - | | | | | | 9 | USMC, Mtn. Warfare Center, Bridgeport, CA | С | Other | | • | | | | | - | ╁ | | ┢ | | | | | 9 | Seal Beach Navy Weapons Station IR Site 14, CA | D | Other | | | | _ |
 | | • | ┢ | | - | | | | | 9 | McClellan AFB OUD, CA | 0 | Other | | | | _ | | | | | | | | | | | 9 | Ft. Ord Marina, Fritzche AAF Fire Drill Area, CA | С | Other | | • | | | | <u> </u> | Ť | _ | | _ | | | | | 9 | Purity Oil Sales OU 2, CA | PD | Remedial | | | | <u> </u> | ┢┈ | | • | | | | | | | | 9 | Jasco Chemical Co., CA | D | Remedial | | • | | | | <u> </u> | | - | | | | | | | 9 | Signetics (AMD 901) (TRW), Signetics OU, CA | 0 | Remedial | | | | | | | • | 1 | | | | | | | 9 | Lawrence Livermore National Laboratory, CA | D | Remedial | | | <u> </u> | | | | • | | | | | | | | 9 | Sacramento Army Depot (Burn Pits OU), CA | 0 | Remedial | | | | | † | | • | | | | | / | 7 | | 9 | Lorentz Barrel and Drum (OU 1), CA | PD | Remedial | | | | | | | • | | | | | | | | 9 | Hexcel, CA | PD | Remedial | • | | | | | | • | | | | a | | | | 9 | Intersil, CA | С | Remedial | | | | | | | • | | | | | | | | 9 | U. S. Public Works Center, Guam, GU | 0 | Other | | | | • | | | | | | | | | | | 9 | Poly-Carb, NV | С | Removal | | • | | | | | | • | | | | | | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification | | | <i>M</i> tus | anu 1 | | IUIU | gj \ | <i>)</i> (1111 | ша | - y 1 | /Iat | LIA | | | | | | |--------|--|--------------|----------|------------|--------------|------------|----------------|---|---------------------|----------------|-----------|--------------------------|---------|-----------|---|--| | | Pagion 10 | <u> </u> | | | | | | | 7 / | | Tecl | anology | у Туре | | | | | | Region 10 | | | // | Jederlegis 2 | and ite of | ider of st | restricted. | ided from Situation | ding in | Steaken 1 | Entraction
Soil Washi | all the | rection ? | de de la companya | | | Region | Site Name, State | Status | Action | / * | NOT P | NOT. | Child 4 | \$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | W. | 8 3 / 6 | Sqil S | golf c | | | Sit of | | | 10 | Ft. Wainwright, AK | 0 | Other | | • | | | | | | | | | | | | | 10 | Eielson Air Force Base, AK | 0 | Remedial | • | | | | | | • | | | | | | | | 10 | Union Pacific Railroad Sludge Pit, ID | PD | Remedial | | | | | • | | | | | | | | | | 10 | United Chrome Products, OR | 0 | Remedial | | | | | • | | | | | | | | | | 10 | Gould, Inc., OR | 0 | Remedial | | | | | | | | • | | | | | | | 10 | Umatilla Army Depot Activity, Soil Op Unit, OR | D/I | Remedial | | • | | | | | | | | L | | | | | 10 | Commencement Bay/S. Tacoma Well 12A, WA | 0 | Remedial | | | | | | | • | | | | | | | | 10 | Naval Submarine Base, Bangor Site A, OU 1, WA | I | Remedial | | | | | | | | • | | | | | | | 10 | Drexler - RAMCOR, WA | С | Removal | | | | | | | | | | • | | | | | 10 | Harbor Island, WA | PD | Remedial | | | | | | | | | | • | | | | | 10 | Fairchild AFB OU 1 Craig Rd LF., WA | D | Remedial | | | | | | | • | | | | | | | | 10 | Fairchild AFB, Priority 1 OU's (OU 2) FT-1, WA | D | Remedial | • | | | | | | | | | | ● a | | | | 10 | Fort Lewis Mil Res. Lf 4 & Sol. Refined Coal, WA | D | Remedial | | | | | | | •. | | | | ● a | | | | 10 | Bonneville Power Administration, OU A, WA | I | Remedial | | • | | | | | | | | | | | | | * | Naval Communication Station, Scottland | С | Remedial | • | | | | | | | | | | | | | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification ^{*} Naval Communication Station is located in Scottland, not in Region 10. # Appendix A Innovative Technologies at Superfund Remedial Actions #### **TABLE A-1** ### REMEDIAL ACTIONS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY Table A-1 is the principal part of this chapter. It contains the most detailed, site-specific information for remedial sites for which an innovative treatment has been selected. The columns of Table A-1 present the following information: #### Region This column indicates the EPA Region in which the site is located. #### Site Name, State, ROD Date This column identifies the site and the operable unit for which an innovative treatment technology was selected. A Record of Decision (ROD) documents the selection of remedy in the remedial program. The date shown in this column is the date on which a ROD was signed by an EPA official. An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site. #### Specific Technology The second column describes the specific technology selected within a general category of innovative treatment. For example, within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen. #### **Site Description** This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently selected innovative technology for wood preserving sites. #### Media (quantity) This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made to include the maximum depth of the treatment to provide the reader with another parameter significant to the application. #### **TABLE A-1 (Continued)** #### **Key Contaminants Treated** The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. Other contaminants may also be listed that may be treated. Other contaminants that may be present, but that are not to be addressed by the listed technology, are not included. #### Status This column indicates the status of the application of the innovative treatment technology. Predesign indicates that the ROD has been signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is in design, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is being installed, the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is operational if it is completely installed and it is now being operated as a treatment system; the remedy is completed if the goals of the ROD or decision document for that treatment technology have been met and treatment has ceased. One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the project. Whenever possible, the season and year in which the current phase will end is given. The information is identified as the "completion planned" date. #### Lead Agency, Treatment Contractor The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties will conduct the remedy with oversight by EPA or the State (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction through its contractors, the state may manage the project with
Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may act for EPA to manage the design or construction. No matter what agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead organization has selected a contractor. #### Contacts/Phone This final column provides the names and telephone numbers of useful contacts for the site or technology. The first name listed is usually the EPA remedial project manager (RPM) responsible for the site. If a remedy is being managed by the state, the name and phone number of the state RPM also is provided. Information on other useful contacts may also be provided. #### Bioremediation (Ex situ) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|------------------------|--|--|-----------------------------|---|--|-----------------------------| | 1 | Iron Horse Park*, MA
(09/15/88) | Land treatment | Industrial and railyard waste | Sludge (25,000
cy) | PAHS | Operational;
Completion
planned Summer
1995 | PRP
lead/Federal
oversight; ENSR
Consulting | Don McElroy
617-223-5571 | | 2 | General Motors/Central
Foundry Division, QU
1, NY (12/17/90) | Slurry phase | Machine shops,
Engine casting
facility | Soil (100,000
cy), Sludge
(91,000 cy) from
lagoon, Sediments
(62,000 cy) | PCBs | In design; Design completion planned Summer 1995; Remedy being reconsidered; thermal desorption and solvent extraction also being evaluated | PRP
lead/Federal
oversight | Lisa Carson
212-264-6857 | | 2 | General Motors/Central
Foundry Division, OU
2, NY (03/31/92) | Slurry phase | Aluminum casting
plant | Soil (59,000 cy) | PCBs | In design; Design completion planned Summer 1995; Remedy being reconsidered; thermal desorption and solvent extraction also being evaluated | PRP
lead/Federal
oversight | Lisa Carson
212-264-6857 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|--|--|---|---|--| | 3 | Whitmoyer
Laboratories, OU 3, PA
(12/31/90) | Bioremediation
(Ex Situ) | Other organic
chemical
manufacturing | Soil and sediment
combined (5,600
cy) | VOCs (TCE), SVOCs
(Aniline) | In design;
Design
completion
planned Fall
1995 | PRP
lead/federal
oversight;
Environ | Chris Corbett
215-597-8186 | | . 3 | Ordnance Works
Disposal Areas, WV
(09/29/89) | Land treatment | Other organic
chemical
manufacturing,
Other inorganic
chemical
manufacturing | Soil (13,500 cy) | PAHs
(Carcinogenic
PAHs) | In design; Design completion planned Summer 1998; Treatability study underway | PRP
lead/Federal
oversight; ABB
Environmental
(Design) | Melissa
Whittington
215-597-1286 | | 4 | Brown Wood
Preserving*, FL
(04/08/88) | Land treatment | Wood preserving,
Drum storage/
disposal | Soil (8,100 cy) | PAHs (Creosote) | Completed;
Operational
from 1/89 to
7/90 | PRP
lead/Federal
oversight;
Remediation
Technology,
Inc. | Ann Marie
Gallespie
404-347-6255 | | 4 | Cabot Carbon/Koppers,
FL (09/27/90)
See also
Bioremediation (In
Situ), Soil Washing | Slurry phase
(preceded by
soil washing) | Wood preserving,
Pine tar and
turpentine
manufacturing | Soil fines from
approximately
6,400 cy | SVOCs (PCP), PAHs | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight | Patsy Goldberg
404-347-6265 | | 4 | Dubose Oil Products*,
FL (03/29/90) | Solid phase
Windrowing with
aeration and
irrigation in a
barn | Petroleum refining
and reuse | Soil (30,000 cy) | VOCs (TCE, DCE,
Benzenes,
Xylenes), SVOCs
(PCP), PAHs | Operational;
Completion
planned
December 1994;
Operation
began 11/93 | PRP
lead/Federal
oversight;
Wastech | Mark Fite
404-347-6263
George Linder
(FL)
904-488-0190 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|--|---|--|--|---| | 4 | Whitehouse Waste Oil
Pits (amended ROD)*,
FL (06/16/92)
See also Soil Washing | Sturry phase
preceeded by
soil washing | Waste oil recycler | Soil (quantity
unknown)
Residuals from
soil washing | VOCS, PCBS, PAHS | In design;
Remedy being
reconsidered;
further site
characterizati
on underway | Federal
lead/Fund
Financed | Tony Best
404-347-6259 | | 4 | Mathis Brothers -
South Marble Top Road
Landfill, GA
(03/24/93) | Bioremediation
(Ex Situ) | Landfill operation | Soil (97,700 cy) | VOCs, SVOCs,
Biocides | In design;
Operation
planned to
start Spring
1995 | PRP
lead/Federal
oversight;
Engineering
Science | Charles King
404-347-6262 | | 4 | Benfield Industries,
NC (07/31/92) | Land treatment | Bulk chemical
mixing and
repackaging plant. | Soil (4,300 cy)
fines from soil
washing | SVOCs (Creosote) | In design;
Design
completion
planned early
1995 | Federal
lead/Fund
Financed | Jon Bornholm
404-347-7791 | | 4 | Cape Fear Wood
Preserving, NC
(06/30/89)
See also Soil Washing | Slurry phase;
may be followed
by s/s | Wood preserving | Soil (2,400 cy);
Also fines from
soil washing | VOCs, PAHs | Design completed but not installed; will be installed no earlier than Summer 1995 | Federal
lead/Fund
Financed | Jon Bornholm
404-347-7791 | | 4 | Helena Chemical, SC
(09/08/93)
See also
Dechlorination | Bioremediation
(Ex Situ)
Anaerobic and
aerobic | Retail sales
outlet for
agricultural
chemicals | Soil quantity
unknown | VOCs (Diesel
fuel), Biocides
(DDT, Aldrin,
Dieldrin,
Chlordane,
Toxaphene) | In design;
Design
completion
planned Winter
1994 | PRP
lead/Federal
oversight;
Ensafe | Bernie Hayes
404-347-7791
Adrian Felder
(SC)
803-734-5390 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|-----------------------------|---|--------------------------------------|---|--|---|--| | 4 | Para-Chem Southern,
Inc., SC (09/27/93) | Sturry phase | Manufacturing Plant - products include polymers, latex, coatings, adhesives | Sludge(200 cy) | VOCs (1,1,1-TCA,
DCA, PCE), SVOCs | Predesign;
Currently
conducting a
treatability
study | State lead/Fund
Financed; The
Fletcher Group
(prime), RMT
(subcontractor) | Terry Tanner
404-347-7791
ext (4117)
Mike Klender
(SC)
803-734-5471 | | 5 | Galesburg/Koppers, IL
(06/30/89) | Land treatment | Wood preserving | Soil (15,200 cy) | SVOCs (PCP,
Phenols), PAHs
(Creosote) | In design;
Design
completion
planned Spring
1997 | PRP lead/State
oversight;
Remediation
Technologies,
Inc. | Brad Bradley
312-886-4742
Fred Nika (IL)
217-782-6760 | | 5 | Cliffs/Dow Dump*, MI
(09/27/89) | Bioremediation
(Ex Situ) | Waste disposal for
charcoal
manufacturing
plant | Soil (9,500 cy) | VOCs (TCE, BTEX),
SVOCs (Phenol),
PAHs
(Naphthalene) | In design; Design completion planned fall 1994; Reconsidering which material will be treated |
PRP
lead/Federal
oversight; ENSR
(Design) | Ken Glatz
312-886-1434 | | 5 | Burlington Northern
Railroad Tie Treating
Plant*, MN (06/04/86) | Land treatment | Wood preserving | Soil (9,500 cy),
Sludge(9,500 cy) | SVOCs (Phenols,
Creosote), PAHs | Operational;
Completion
planned Fall
1994 | PRP
lead/State-Fede
ral oversight;
Remediation
Technologies,
Inc. | Tony Rutter 312-886-8961 Fred Jenness (MN) 612-297-8470 Richard Truax (RETEC) 303-493-3700 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|--|--|---|---|--| | 5 | Joslyn Manufacturing
and Supply Co., MN | Land treatment
Unlined
treatment unit
with irrigation
and tilling | Wood preserving | Soil (75,000 cy) | SVOCS (PCP, PAHs) | Operational;
Completion
planned Fall
1994 | PRP lead/State
oversight; BARR
Engineering/GL
Contracting,
Inc. | Kevin Turner
312-886-4444
Ann Bidwell
(MN)
612-296-7827 | | 5 | Allied Chem & Ironton
Coke, OU 2*, OH
(12/28/90)
See also
Bioremediation (In
Situ), Other
Technologies | Land treatment | Coke manufacturing | Soil (30,000 cy) | PAHS | In design;
Design
completion
planned early
1995 | PRP
lead/Federal
oversight; IT
Corporation
(prime
contractor,
design) | Tom Alcamo
312-886-7278 | | 5 | Moss-American*, WI
(09/27/90)
See also Soil Washing | Slurry phase
preceded by soil
washing | Wood preserving | Soil (quantity
unknown); fines
from soil washing | PAHS | Predesign; PD
completion
planned 1995;
Bench-scale
study is
underway | PRP lead/Federal oversight; Weston, Inc.(prime contractor)/IT Corporation(sub contractor) | Russ Hart
312-886-4844 | | 6 | Popile, AR (02/01/93) See also Bioremediation (In Situ) | Land treatment | Inactive wood
preserving
operation | Soil and Sludge
combined (156,000
cy) | SVOCs (PAHs,
Phenols) | Predesign; RFP
for design to
be issued Fall
1994 | Federal
Lead/Fund
Financed | Paul Sieminski
214-655-8503 | | 6 | Old Inger Oil
Refinery*, LA
(09/25/84) | Land treatment | Petroleum refining
and reuse | Soit and Studge
combined (120,000
cy) | VOCs (Benzene,
Ethylbenzene),
PAHs (Petroleum
hydrocarbons) | Operational;
Completion
planned Fall
2001 | State lead/Fund
Financed;
Westinghouse
Haztech
(installation),
Operation to
start Fall 1994 | Paul Sieminski
214-655-8503
Tom Stafford
(LA)
504-765-0487 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|-------------------------------------|--|--|---|--|---| | 6 | Pab Oil & Chemical
Services, LA
(09/22/93) | Bioremediation
(Ex Situ)
followed by s/s
for inorganics | Disposal site for oily drilling mud | Soil (10,900 cy),
Sludge (15,500
cy), Sediments
(520 cy) | PAHs
(Carcinogenic and
Non-carcinogenic) | Predesign; Design to begin October 1994; A treatability study will determine the type of bioremediation | PRP
lead/Federal
oversight | James Van
Buskirk
214-665-6767 | | 6 | Prewitt Abandoned
Refinery, NM
(09/30/92)
See also Soil vapor
extraction, Other
Technologies | Bioremediation
(Ex Situ) | Crude oil refinery | Soil (1,500 cy),
Sludge (1,200 cy) | VOCs (BTEX), PAHs | Predesign | PRP
lead/Federal
oversight | Monica
Chapa-Smith
214-655-6780 | | 6 | Oklahoma Refining Co.,
OK (06/09/92)
See also
Bioremediation (In
Situ) | Bioremediation
(Ex Situ)
followed by s/s | Petroleum refining
and reuse | Soil and sludge
combined (56,000
cy), Sediments
(quantity
unknown) | VOCs, Organics
(LNAPLs) | In design;
Phase 1 to be
completed
4/95; Phase 2
to be
completed 5/96 | State lead/Fund
Financed | Philip Allen
214-665-8516 | | 6 | North Cavalcade
Street*, TX (06/28/88) | Land treatment | Wood preserving | Soil (5,500 cy) | PAHs (Creosote) | In design;
Design
completion
planned Summer
1994 | State lead/Fund
Financed | Glenn Celerier
214-655-8523
Stephen Chong
(TX)
512-239-2441 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|------------------------|--|--|--|---|---| | 6 | Sheridan Disposal
Services*, TX
(12/29/88) | Slurry phase | Industrial
landfill | Soil (13,000 cy)
effected soils,
Sludge (30,000
cy) of oils and
sludge | VOCs (Benzene,
Toluene), SVOCs
(Phenols), PCBs | Predesign; Pilot study conducted in 1991; Awaiting entry of consent decrees by court to begin design | PRP lead/State
oversight | Gary Baumgarten
214-655-6749 | | 7 | Vogel Paint & Wax, IA
(09/20/89) | Land treatment using four cells | Paint/ink
formation | Soil (40,000 cy) | VOCs (Methyl
Ethyl Ketone,
BTX) | Operational;
Completion
planned 1997 | PRP lead/State
oversight;
Vogel | Jack Generaux
913-551-7690
Bob Drustrup
(IA)
515-281-8900 | | 8 | Broderick Wood Products OU 2, CO (03/24/92) See also Bioremediation (In | Land treatment | Wood preserving | Soil (85,000 cy),
Sediments (120
cy) | SVOCs (PCP), PAHs | Operational;
Operation
started August
1994;
Completion
planned 2001 | Federal
lead/Fund
Financed; CH2M
Hill | Armando Saenz
303-293-1532 | | 8 | Burlington Northern
(Somers Plant)*, MT
(09/27/89),
See also
Bioremediation (In
Situ) | Land treatment;
using 12-acre
unit | Wood preserving | Soil (54,000 cy)
excavated soil | PAHs (Creosote) | Operational;
Operation
began 9/93;
Completion
planned 1999 -
2002 | PRP
lead/Federal
oversight;
Remediation
Technologies,
Inc. | Jim Harris
406-449-5414
(ext. 260) | | 8 | Idaho Pole Company*,
MT (09/28/92)
See also
Bioremediation (In
Situ), In situ
Flushing | Land treatment | Wood preserving | Soil (19,000 cy),
Sediments (2,683
cy) | SVOCs (PCP, PAHs) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight | Jim Harris
406-449-5414
(ext. 260) | | | т | | 1 | | | | | | |--------|--|--|--|-------------------|--|---|--|--| | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | | 8 | Libby Ground Water
Contamination*, MT
(12/30/88)
See also
Bioremediation (In
Situ) | Land treatment
using two 1-acre
cells, soil is
excavated &
mixed | Wood preserving | Soil (45,000 cy) | VOCs (Benzene),
SVOCs (PCP), PAHs
(Creosote) | Operational;
Completion
planned 1999 | PRP
lead/Federal
oversight;
Woodward-Clyde | Jim Harris
406-449-5414
(ext. 260)
Bert Bledsoe
(RSKERL)
405-332-2313 | | 8 | Montana Pole and
Treating Plant, MT
(09/21/93)
See also
Bioremediation (In
Situ), In situ
Flushing | Land treatment | Wood preserving | Soil (208,000 cy) | SVOCs (PCP,
Dioxins, PAHs) | Predesign; In
negotiation | In negotiation | Sara Weinstock
406-782-7415 | | 8 | Wasatch Chemical*,
UT
(03/29/91)
See also In situ
Vitrification | Land treatment
on an asphalt
pad | Pesticide manufacturing/use/ storage, Other organic chemical manufacturing, Other inorganic chemical manufacturing | Soil (1,100 cy) | VOCs (Toluene,
Xylene) | Completed;
Operational
from 10/92 to
12/93 | PRP
lead/federal
oversight;
Harding/Lawson | Bert Garcia
303-293-1537 | | 9 | J.H. Baxter*, CA
(09/27/90) | Land treatment
followed by
fixation for
metals | Wood preserving | Soil (30,000 cy) | SVOCs (PCP,
Dioxins, PAHs) | In design;
Design
completion
planned Winter
1994 | PRP
lead/Federal
oversight | Kathy Setian
415-744-2254 | | 9 | Jasco Chemical Co., CA
(09/30/92) | Bioremediation
(Ex Situ) may
combine aerobic
and anaerobic | Chemical blending and repacking | Soil (1,095 cy) | VOCs (DCA,
Methylene
chloride,
Acetone, Xylene) | In design;
Pilot-scale
treatability
study planned
Spring 1994 | PRP
lead/Federal
oversight | Rosemarie
Carroway
415-744-2235 | June 1994 # Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|------------------------|----------------------------------|------------------|-----------------------------|--|--|--| | 10 | Umatilla Army Depot
Activity, Soil
Operable Unit*, OR
(09/30/92) | Composting | Explosives washout | Soil (7,000 cy) | Explosives (TNT, RDX) | Design completed but not installed; Contract awarded; Operation scheduled for mid-Fall 1994 | Army lead/EPA
and State
oversight;
Bioremediation
Services, Inc. | Harry Craig
503-326-3689
Mark Daugherty
(US Army)
503-564-5294
Mike Nelson
(USACE Seattle)
206-764-3458 | | 10 | Bonneville Power
Administration, OU A,
WA (05/06/93) | Solid phase | Research and
Testing Facility | Soil (500 cy) | PAHS (PCP) | Being installed; Installation completion planned Fall 1994; Operation to be completed by Winter 1994 | Federal
facility/EPA
and State
oversight | Nancy Harney
206-553-6635 | # Table A-1 REMEDIAL ACTIONS: SITE-SPECIFIC INFORMATION BY TECHNOLOGY THROUGH FY 1993 ### Bioremediation (In situ) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|---|---|---|---|---| | 1 | Hocomonco Pond, ESD,
MA (09/30/85) | In situ
groundwater | Wood preserving | Groundwater | PAHs (Creosote),
Organics (DNAPLs) | Being
installed;
Installation
completion
planned Fall
1995 | PRP
lead/Federal
oversight | 8ob Leger
617-573-5734 | | 2 | FAA Technical Center*,
NJ (09/26/89)
See also Soil vapor
extraction | In situ groundwater Pump & treat followed by H202 addition and reinjection through infiltration galleries | Jet fuel tank farm | Groundwater | VOCs (JP-4) | Being
installed | Federal
Facility, FAA
lead; R.E.
Wright | Carla Struble
212-264-4595
Keith Buch
(FAA)
609-485-6644 | | 2 | Applied Environmental
Services
(Groundwater), NY
(06/24/91) | In situ
groundwater, in
conjunction
w/air sparging &
nutrient
addition | Bulk petroleum and
hazardous waste
storage facility | Groundwater | VOCs (BTEX) | Being
installed;
Remedial
action to
start in Fall
1994 | PRP lead/State
oversight;
Remediation
Technologies,
Inc. | Mel Haupton
212-264-7681
John Grathwol
518-457-9280 | | 2 | Applied Environmental
Services, OU 1, NY
(06/24/91)
See also Soil vapor
extraction, Other
Technologies | In situ soil;
Bioventing | Bulk petroleum and
hazardous waste
storage facility,
fuel blending | Soil (quantity
unknown),
Groundwater depth
to gw avg. 8 feet | VOCs (BTEX),
SVOCs
(Naphthalene,
Bis(2-ethylhexyl)
phthalate) | Being
installed;
Operation to
start
September 1994 | PRP lead/State
oversight;
Remediation
Technologies,
Inc. (Design) | Mel Hauptman
212-264-7681
John Grathwol
(NY)
518-457-9280 | | 3 | Delaware Sand and
Gravel, DE (09/30/93)
See also Soil vapor
extraction | In situ soil | Landfill site drum
disposal area | Soil (14,050 cy) | VOCs (Benzene,
TCE, PCE,
Methylene
Chloride) | Predesign; In negotiation | PRP
lead/Federal
oversight | Eric Newman
215-597-0910 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|--|---|---|---|--------------------------------| | 4 | Cabot Carbon/Koppers,
FL (09/27/90)
See also
Bioremediation (Ex
Situ), Soil Washing | In situ soil;
Treating
above/below gw
table by
nutrient
addition | Wood preserving,
Pine tar and
turpentine
manufacturing | Soil (5,000 cy) | SVOCS (PCP), PAHS | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight;
McLaren-Hart
(Design
contractor) | Patsy Goldberg
404-347-6265 | | 4 | Peak Oil/Bay Drums OU
1, FL (06/21/93)
See also In situ
Flushing | In situ soil | Waste oil
re-refinery | Soil (quantity
unknown) | VDCs (PCE,
Ethylbenzene),
SVOCs (PAHs),
PCBs | Predesign; PD
completion
planned Fall
1994 | Federal
lead/Fund
Financed | David Abbot
404-257-2643 | | 5 | Seymour Recycling, IN
(09/30/87)
See also Soil vapor
extraction | In situ soil
Nutrients plowed
into soil | Chemical waste
management and
incineration | Soil (190,000 cy)
12 acres to a
depth of 10 feet | VOCs (TCA, Carbon
Tetrachloride,
TCE) | Completed;
Operational
from 1/87 to
6/90 | PRP
lead/Federal
oversight; ABB
Environmental
Services | Jeff Gore
312-886-6552 | | 5 | Seymour Recycling
(Groundwater), IN
(09/30/87) | In situ
groundwater; Gw
treatment
incidental to
soil treatment | Chemical waste
management and
incineration | Groundwater under
12 acres | VOCs, SVOCs, PAHs | Operational; Gw treatment was not designed but appears to be occuring as a result of in situ soil treatment | PRP
lead/Federal
oversight;
Geraghty Miller | Jeff Gore
312-886-6552 | | 5 | Allied Chem & Ironton
Coke, OU 2*, OH
(12/28/90)
See also
Bioremediation (Ex
Situ), Other
Technologies | Bioremediation
(In Situ) of
lagoon sediments | Coke manufacturing | Sediments
(457,000 cy) from
a lagoon | PAHS | In design; Design completion planned Fall 1994; Operation planned to begin Spring 1995 | PRP lead/Federal oversight; IT Corporation (prime contractor), Black & Veetch (subcontractor) | Tom Alcamo
312-886-7278 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|--|--|--|--|--------------------------------| | 5 | Hagen Farm Site,
Groundwater Control
OU, WI (09/30/92) | In situ
groundwater | Industrial
landfill,
Municipal landfill | Groundwater | VOCs (Vinyl
Chloride, MEK,
Xylene) | In design;
Design
completion
planned Spring
1995 | PRP
lead/Federal
oversight;
Warzyn (prime
contractor) | Steve Padovani
312-353-6755 | | 5 | Onalaska Municipal
Landfill*, WI
(08/14/90) | In situ soil;
air injection
but no nutrient
or
microbe
addition | Municipal landfill | Soil (16,000 cy)
to a depth 11 -15
feet | PAHs
(Naphthalene) | Operational;
Completion
sometime
between 1996
and 2000. | Federal
lead/fund
Financed; CH2M
Hill (prime
contractor) | Kevin Adler
312-886-7078 | | 6 | Popile, AR (02/01/93)
See also
Bioremediation (Ex
Situ) | In situ
groundwater | Inactive wood preserving operation | Groundwater | MAPLS | Predesign; RFP
for design to
be issued Fall
1994 | Féderal
lead/Fund
Financed | Paul Sieminski
214-655-8503 | | 6 | American Creosote
Works, Inc. (Winnfield
Plant), LA (04/28/93) | In situ soil | Wood preserving | Soil (250,000 cy) | SVOCs (PCP,
Creosote), PAHs | Design
completed but
not installed;
Completion
planned Fall
1994 | Federal
lead/fund
Financed; CDM
Federal
Programs
(design
contractor) | Bert Griswold
214-655-8502 | | 6 | Atchison/Santa
Fe/Clovis, NM
(09/23/88) | In situ soil | Railyard wastes
(diesel spills) | Soil (28,600 cy),
Sludge combined,
6 feet deep | PAHs (petroleum
hydrocarbons,
diesel fuel) | Operational;
Completion
planned end of
1996;
Operation
began 6/92 | PRP
lead/Federal
oversight;
Radian
Corporation | Ky Nichols
214-665-6783 | | 6 | Oklahoma Refining Co.,
OK (06/09/92)
See also
Bioremediation (Ex
Situ) | In situ soil | Petroleum refining
and reuse | Soil (43,300 cy) | VOCs, Organics
(LNAPLs) | In design;
Phase 1 to be
completed
4/95; Phase 2
to be
completed 5/96 | State lead/Fund
Financed | Phillip Allen
214-665-8516 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--------------------|---|--|--|---|---| | 6 | French Limited, TX
(03/24/88) | Bioremediation
(In Situ) In
Situ Lagoon | Petrochemical | Soil and Sludge
combined (300,000
cy) | VOCs, PAHs | Completed;
Operational
1/92 - 12/93 | PRP
lead/Federal
oversight | Judith Black
214-655-6735 | | 7 | People's Natural Gas,
IA (09/16/91) | In situ soil;
injection of
nutrients and
oxygenated water
to treat both
saturated and
unsaturated soil | Coal gasification | Soil (18,500 cy) | VOCs (BTEX), PAHS | Design completed but not installed; pilot study underway; decision to expand the system will be made in Fall | PRP
lead/Federal
oversight; BARR
Engineering | Bill Bunn
913-551-7792 | | 7 | Pester Refinery Co.,
KS (09/30/92)
See also In situ
Flushing | In situ soil
preceeded by in
situ soil
flushing | Refinery operation | Soil (70,000 cy) | PAHs
(Benzo(a)anthrace
ne, Chrysene) | Predesign | PRP lead/State
oversight | Cathy Barret
913-551-7704
Rachel Miller
913-296-1676 | | 8 | Broderick Wood
Products OU 2, CO
(03/24/92)
See also
Bioremediation (Ex
Situ) | In situ soil and in situ gw bioventing of soil & aquifer; solids following free product recovery and dewatering | Wood preserving | Soil 20 acres; 10
feet to rock | SVOCs (PCP), PAHs | In design;
Design
completion
planned Fall
1994 | Federal
lead/Fund
Financed; CH2M
(prime
contractor) | Armando Saenz
303-293-1532 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|------------------|--|--|--|---|--| | 8 | Burlington Northern
(Somers Plant)*, MT
(09/27/89)
See also
Bioremediation (Ex
Situ) | In situ groundwater Carbon treatment aboveground; treatment followed by nutrient and pure oxygen addition prior to reinjection | Wood preserving | Groundwater 2
areas, 20 ft deep
and 30 ft deep | SVOCs (Phenols),
PAHs (Creosote) | Operational;
Operational
since May
1994;
completion
date unknown | PRP
lead/Federal
oversight;
Remediation
Technologies,
Inc. | Jim Harris
406-449-5414
(ext. 260) | | 8 | Idaho Pole Company*,
MT (09/28/92)
See also
Bioremediation (Ex
Situ), In situ
Flushing | In situ
groundwater;
injection of
oxygen and
nutrients | Wood preserving | Groundwater down
to 30 feet deep | SVOCS (PCP, PAHS) | Predesign | PRP
lead/Federal
oversight | Jim Harris
406-449-5414
(ext. 260) | | 8 | Libby Groundwater
Contamination*, MT
(12/30/88)
See also
Bioremediation (Ex
Situ) | In situ
groundwater;
Injection of
H2O2 and
Potassium
tripolyphosphate | Wood preserving | Groundwater (40 -
80 ft deep) | VOCs (Benzene),
SVOCs (PCP), PAHs
(Creosote) | Operational;
Completion
planned 2001;
Operation
began in
Spetember 1991 | PRP
lead/Federal
oversight;
Woodward-Clyde | Jim Harris
406-449-5414
(ext. 260)
Bert Bledsoe
(RSKERL)
405-332-2313 | | 8 | Montana Pole and
Treating Plant, MT
(09/21/93)
See also
Bioremediation (Ex
Situ), In situ
Flushing | In sîtu soil | Wood preserving | Sail (44,000 cy) | SVOCs (PCP,
Dioxins, PAHs) | Predesign; In
negotiation | In negotiation | Sara Weinstock
406-782-7415 | | 8 | Montana Pole and
Treating Plant
(Groundwater), MT
(09/21/93) | In situ
groundwater | Wood preserving | Groundwater | SVOCs (PCP,
Dioxins, PAHs) | Predesign; In
negotiation | In negotiation | Sara Weinstock
406-782-7415 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|--|--|--|---|---|---| | 9 | Williams AFB, (OU2),
AZ (12/30/92)
See also Soil vapor
extraction | Bioremediation
In Situ;
Bioventing | AFB, Flight
Training Base | Soil (54,000 cy)
down to 25 feet
deep | VOCs
(Dichlorobenzene,
1,2-DCA,
Methylene
Chloride), PAHs
(TPH) | Being
installed;
Full-scale
operation to
start 1/95 | USAF - IRP/ EPA
and State
Oversight;
Earth
Technologies | R. Mendoza
415-744-2407
William Harris
(USAF)
602-988-6486 | | 9 | Hexcel, CA (09/21/93)
See also Soil vapor
extraction, Other
Technologies | In situ soil | Manufacturing | Soil (quantity
unknown),
Groundwater | VOCs (PCE,
Acetone, MEK,
Benzene) | Predesign; PD
completion
planned Fall
1994 | PRP lead/State
oversight | Mark Johnson
510-286-0305 | | 9 | Koppers Company, Inc.
(Oroville Plant), CA
(04/04/90)
See also Soil Washing | In situ soil | Wood preserving | Soil (110,000 cy)
to a depth of 10
ft | SVOCs (PCPs),
PAHs | Design completed but not installed; installation postponed until completion of removal action | PRP
lead/Federal
oversight; SBP
Technologies | Fred Schauffler
415-744-2359 | | 10 | Eielson Air Force
Base*, AK (09/29/92)
See also Soil vapor
extraction | In situ soil;
Bioventing | Tactical air
support
installation
Airplane fueling
and maintenance | Soil (quantity
unknown) down to
10 ft deep | VOCs (JP-4),
SVOCs, PAHs
(Petroleum
Hydrocarbons,
Diesel) | Operational | Federal
Facility/EPA
and State
oversight;
DERA; EA
Engineering
(Design) | Mary Jane
Nearman
206-553-6642
Rielle Markey
(AK)
907-451-2117
Capt. Max Gandy
(Eielson AFB)
907-377-4361 | | 10 | Fairchild AFB,
Priority 1 OU's (OU 2)
FT-1, WA (07/14/93)
See also Other
Technologies | Bioremediation;
In Situ
Bioventing | Fire training area | Soil (quantity
unknown) | VOCs (Benzene) | In design;
Pilot test
starting 5/94 | USAF/Federal
oversight; E.S.
Inc. | Cami
Grandinetti
206-553-8696 | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 ### **Chemical Treatment** | Region | Site Name, State,
(ROO Date) | Specific
Technology | Site Description | Media
(Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|------------------|--|-----------------------------|--|--|-------------------------------------| | 4 | JFD
Electronics/Channel
Master, NC (09/10/92) | Oxidation of cyanides followed by on-site s/s for metals | Solvent recovery | Soil and Sludge
combined, (3,000
cy) | Inorganic
cyanides | In design;
Design
completion
planned Summer
1995 | PRP
lead/Federal
oversight | McKenzie
Mallary
404-347-7791 | #### **Dechlorination** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|---|---|---|--|---| | | Myers Property, NJ
(09/28/90)
See also Soil Washing | Dechlorination | Pesticide
manufacturing/use/
storage | Soil (48,000 cy),
Sediments (500
cy) | SVOCs
(Chlorobenzene),
Biocides (DDT,
DDE, DDD),
Dioxins | In design; Design completion planned Spring 1996; Design concurrent with treatability studies | PRP
lead/Federal
oversight;
Metcalf & Eddy | John Prince
212-264-1213 | | 2 | Wide Beach
Development, NY
(09/30/85) | Dechlorination
with APEG using
an anaerobic
thermal process
unit | Contaminated road
dust, driveways,
ditches | Soil (40,000 cy) | PCBs | Completed;
Operational
from 9/90 to
9/91 | Federal
lead/Fund
Financed;
SoilTech Inc.
(subonctractor
to Kimmins) | Herb King
212-264-1129 | | 3 | Saunders Supply Co, OU
1, VA (09/30/91)
See also Thermal
Desorption | Dechlorination | Wood preserving | Sludge (700 cy)
KOO1 RCRA waste
from a lagoon | SVOCs (PCP),
Dioxins | In design;
Design
completion
planned Spring
1995 | Federal
lead/Fund
Financed | Andy Palestini
215-597-1286 | | 4 | Smith's Farm Brooks,
OU 1*, KY (09/30/91)
See also Thermal
Desorption | Dechlorination
(part of
anaerobic
thermal
treatment) | Drum storage/
disposal | Soil (18,500 cy) | PCBs | Operational;
Operation
began in April
1994;
completion
planned
October 1994 | PRP
lead/Federal
oversight;
Canonie (prime
contractor),
SoilTech
(subcontractor) | Tony DeAngelo
404-347-7791 | | 4 | Helena Chemical, SC
(09/08/93)
See also
Bioremediation (Ex
Situ) | Dechlorination | Retail sales
outlet for
agricultural
chemicals | Soil (quantity
unknown) | VOCs (Diesel
fuel), Biocides
(DDT, Aldrin,
Dieldrin,
Chlordane,
Toxaphene) | In design;
Design
completion
planned Winter
1994 | PRP
lead/Federal
oversight;
Ensafe | Bernie Hayes
404-347-7791
Adrian Felder
(SC)
803-734-5390 | ### In situ Flushing | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|---|--|--|---|---|--| | 2 | Lipari Landfill (OU
2)*, NJ (09/30/85) | Soil flushing
Flushing of area
within the
slurry wall,
including soil
and wastes. | Industrial
landfill,
Municipal landfill | Soil (650,000 cy)
16 acres to a
depth of 15 feet | VOCs (Bis-2-chloroethy lether, DCA, Dichloromethane), SVOCs (Phenol), Metals (Chromium, Lead, Nickel, Mercury) | Operational;
Completion
planned 1999 | Federal
lead/Fund
Financed; AWD,
Inc. | Fred Cataneo
212-264-9542 | | 2 | Vineland Chemical, OU
1 and OU 2, NJ
(09/29/89)
See also Soil Washing | Soil flushing
flushing lagoons
using treated gw | Pesticide
manufacturing/use/
storage | Soil (126,000 cy)
to a depth of 15
feet in sandy
soil | Metals (Arsenic) | In design;
Design
completion
planned Winter
1995 | Federal
lead/Fund
Financed;
Malcolm Pirnie
(Design) | Matthew
Westgate
212-264-3406
Steve Hadel
(USACE-Kansas
City)
816-426-5221 | | 2 | Byron Barrel & Drum,
NY (09/29/89) | Soil flushing | Drum storage/
disposal | Soil (5,200 cy),
Groundwater | VOCs (TCE, DCE,
TCA, Methyl Ethyl
Ketone), Metals
(Chromium, Lead) | Predesign; PD
completion
planned Fall
1994 | PRP
lead/Federal
oversight | Eduardo
Gonzales
212-264-5714 | | 2 | Pasley Solvents and
Chemicals, Inc., NY
(02/24/92)
See also Soil vapor
extraction | Soil flushing | Tank farm and chemical distribution facility | Soil (13,000 cy)
down to 30 feet
deep | SVOCs
(Naphthalene) | In design;
Negotiation
with PRP is
going on for
new design. | Federal
lead/Fund
Financed;
Ebasco (design) | Sherrel Henry
212-264-8675 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|------------------------|--|----------------------------|---|---|--|------------------------------| | 4 | Ciba-Geigy (MacIntosh
Plant) OU 2, AL
(09/30/91)
See also Thermal
Desorption | Soil flushing | Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing | Soil (quantity
unknown) | VOCs (Benzene,
Chloroform,
Toluene),
Biocides (DDD,
DDT, DDE, BHCs,
Diazinon,
Chlorobenzilate),
Metals (Lead) | Predesign; PD
completion
planned Winter
1995;
Treatability
studies
ongoing; final
decision on
technology
will be made
late 1994 | PRP
lead/Federal
oversight;
CDM/FPC
(Demolition/Des
ign
contractors) | Charles King
404-347-6262 | | 4 | Ciba-Geigy (MacIntosh
Plant) OU 4, AL
(07/14/92)
See also Thermal
Desorption | Soil flushing | Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing | Soil (quantity
unknown) | VOCs (Chloroform,
Toluene,
Xylenes),
Biocides
(Atrazine,
Diazinon,
Prometryn,
Simazine), Metals
(Copper, Lead,
Arsenic,
Chromium, Iron
slurry) | Predesign;
Treatability
studies
ongoing; final
decision on
technologies
will be made
late 1994 | PRP
lead/Federal
oversight | Charles King
404-347-6262 | | 4 | Peak Oil/Bay Drums OU
1, FL (06/21/93)
See also
Bioremediation (In
Situ) | Soil flushing | Waste oil
re-refinery | Soil (quantity
unknown) | VOCs (PCE,
Ethylbenzene),
SVOCs (PAMs),
Metals (Lead,
Zinc, Chromium) | Predesign; PD
completion
planned Fall
1994 | Federal
lead/Fund
Financed | David Abbot
404-347-2643 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--|---|--|--|---|--| | 4 |
JADCO-Hughes, NC
(09/27/90)
See also Soil vapor
extraction | Soil flushing
Preceded by
vacuum
extraction using
the same
horizontal wells | Plastics manufacturing, Other organic chemical manufacturing, Other inorganic chemical manufacturing, Drum storage/ disposal, Municipal water supply | Soil (6,000 cy) | VOCs (TCE, Vinyl
Chloride,Carbon
Tetrachloride,Chl
orofor, BTX),
SVOCs
(Dichlorobenzene,
Trichlorobenzene) | In design;
Design
completion
planned
December 1994 | PRP lead/Federal oversight; Conestoga-Rover s & Associates (prime contractor) | Michael
Townsend
404-347-7791
Bruce Nicholson
(NC)
919-733-2801 | | 5 | Ninth Avenue Dump, IN
(06/30/89) | In situ Flushing
of area inside
slurry wall | Industrial
landfill | Soil (64,000 cy),
Groundwater | VOCs (TCE, BTEX) | Completed | PRP
lead/Federal
oversight;
Fluor-Daniel | Bernard Schorle
312-886-4746 | | 5 | Rasmussen Dump, MI
(03/28/91) | Soil flushing
(flushing part
of recycle of
treated gw) | Industrial
landfill,
Paint/ink
formation | Soil seepage
(basin size
unknown) | VOCs (Vinyl
Chloride,
Benzene) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight;
Woodward Clyde
(prime
contractor) | Ken Glatz
312-886-1434 | | 6 | Koppers/Texarkana*, TX
(09/23/88)
See also Soil Washing | Soil flushing
with reinjection
of treated water
to 1 ft below
surface | Wood preserving | Soil (19,400 cy)
below 1 ft,
treated by
reinjected water | PAHs
(Benzo(a)pyrene,
Creosote), Metals
(Arsenic) | In design | PRP
lead/Federal
oversight; ENSR
(RD/RA
contractor) | Ursula Lennox
214-655-6743 | | 6 | South Cavalcade
Street*, TX (09/26/88)
See also Soil Washing | Soil flushing
with the same
surfactants used
for the soils
treated with
soil washing | Wood preserving | Soil (20,000 cy) | PAHs
(Benzo(a)pyrene,
Benzo(a)anthracen
e, Chrysene) | Predesign;
Technology on
hold pending
remediation of
groundwater | PRP
lead/Federal
oversight | Glenn Celerier
214-655-8523 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|--|---|--|--|---| | 7 | Pester Refinery Co.,
KS (09/30/92)
See also
Bioremediation (In
Situ) | Soil flushing
followed by in
situ
bioremediation | Refinery operation | Soil (70,000 cy),
Sludge (30,000
cy) | PAHs
(Benzo(a)anthrace
ne, Chrysene) | Predesign | PRP lead/State
oversight | Cathy Barrett
913-551-7704
Marvin
Glotzbach (KS)
913-296-2783 | | 7 | Lee Chemical, MO
(03/21/91) | Soil flushing
with 3
infiltration
galleries; 10 ft
x 50 ft each | Solvent recovery | Soil (30,000 cy)
20 ft to gw | VOCs (TCE) | Operational;
Completion
planned 1999;
Operation
began 5/94 | PRP lead/State
oversight; (no
treatment
contractor) | Steven Kinser
913-551-7728
Ron Redden (MO)
314-751-8393 | | 8 | Idaho Pole Company*,
MT (09/28/92)
See also
Bioremediation (Ex
Situ), Bioremediation
(In Situ) | Soil flushing | Wood preserving | Soil (6,500 cy) | SVOCs (PCP, PAHs) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight | Jim Harris
406-449-5414
(ext. 260) | | 8 | Montana Pole and
Treating Plant, MT
(09/21/93)
See also
Bioremediation (Ex
Situ), Bioremediation
(In Situ) | Soil flushing | Wood preserving | Soil (44,000 cy) | SVOCs (PCP),
Dioxins, PAHs | Predesign; In
negotiation | In negotiation | Sara Weinstock
406-782-7415 | | 10 | Union Pacific Railroad
Sludge Pit, ID
(09/10/91) | Soil flushing | Railroad
operations,
cleaning and
fueling | Soil (quantity
unknown) | VOCs (PCE,TCE),
PAHs (Petroleum
hydrocarbons),
Metals
(Arsenic,Cadmium) | Predesign;
Remedy being
reconsidered | PRP
lead/Federal
oversight | Ann Williamson
206-553-2739
Clyde Cody (ID)
208-334-0556 | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|------------------------|-------------------------|----------------------------|-----------------------------|---|---|------------------------------| | 10 | United Chrome
Products*, OR
(09/12/86) | Soil flushing | Chrome plating facility | Soil (quantity
unknown) | Metals (Chromium
VI) | Operational;
Operations
began during
Summer 1988
and will
continue until
GW standard is
met. | PRP
lead/Federal
oversight;
CH2MHill &
subcontractors | Alan Goodman
503-326-3685 | #### In situ Vitrification | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|--|---|--|--|---------------------------------| | 5 | Ionia City Landfill*,
MI (09/29/89) | In situ
Vitrification | Municipal landfill | Soil (5,000 cy)
with debris, to a
depth of 15 feet | VCCs (Methylene
Chloride, TCA,
Styrene,
Toluene), Metals
(Lead) | In design;
Design
completion
planned Summer
1995 | PRP
lead/Federal
oversight;
Geosafe | Michael Gifford
312-886-7257 | | 8 | Wasatch Chemical*, UT
(03/29/91)
See also
Bioremediation (Ex
Situ) | In situ Vitrification consolidation of soil & waste in pond prior to treatment | Pesticide manufacturing/use/ storage, Other organic chemical manufacturing, Other inorganic chemical manufacturing | Soil, sludge, and
solids combined
to 5 feet deep
(1,500 cy) | VOCs, SVOCs
(Hexachloro-
benzene, PCP),
Biocides, Dioxins | Design completed but not installed; Installation planned Fall 1994: Project completion planned Spring 1995; awaiting vendor availability | PRP
lead/federal
oversight;
GeoSafe | Bert Garcia
303-293-1537 | # **Soil Vapor Extraction** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|---|--|---|---|---| | 1 | Kellogg-Deering Well
Field, CT (09/29/89) | Soil vapor
extraction | Solvent recovery,
Industrial
complex, illegal
dumping of solvent
was | Soil (quantity
unknown) | VOCs (TCE, PCE,
DCE, TCA, DCA,
Vinyl Chloride) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight; GZA
Geoenviron-
mental (Design) | Leslie McVickar
617-573-9689 | | 1 | Linemaster Switch
Corporation, CT
(07/21/93) | Soil vapor
extraction | Electrical power switches manu. facility | Soil (quantity
unknown) | VOCs (TCE) | Predesign | Federal
lead/Fund
Financed | Elise Jakabhazy
617-573-5760 | | 1 | Groveland Wells*, MA
(09/30/88) | Soil vapor
extraction
(carbon
absorption for
air emissions) | Manufacturing | Soil (19,000 cy)
to a depth of
25-30 feet | VOCs (TCE,
Methylene
Chloride, DCE) | Operational | PRP
lead/Federal
oversight;
Terra Vac | Bob Leger
617-573-5734 | | 1 | Silresim, MA
(09/19/91) | Soil vapor
extraction | Chemical waste reclamation | Soil (137,000 cy) | VOCs (TCE, TCA,
Carbon
Tetrachloride,
Chloroform,
Styrene) | Being
installed;
Installation
completion
planned Winter
1994 |
Federal
lead/Fund
Financed | Mark Otis
617-573-5797 | | 1 | Wells G&H OU 1, MA
(09/14/89) | Soil vapor
extraction with
air flushing | Drum storage/
disposal, Leaking
UST and midnight
dumping | Soil (7,400 cy)
to a depth of 3
feet | VOCs (PCE, TCE) | Operational;
OU 1 consists
of 5
properties,
the technolgy
has become
operational on
some of the
properties. | PRP
lead/Federal
oversight;
Several
contractors
working on the
site | Mary Garren
617-573-9613
Paula
Fitzsimmons
(MA)
617-223-5572 | # Soil Vapor Extraction (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|-------------------------------------|--|--|--|---| | 1 | Union Chemical Co., OU
1, ME (12/27/90) | Soil vapor
extraction | Solvent recovery,
Paint stripping | Soil (10,000 cy) | VOCs
(TCE,DCE,PCE,Xyle
ne) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight;
Balsam
Environmental/
VAPEX | Terrance
Connelly
617-573-9638
Christopher
Rushton (ME)
207-287-2651 | | 1 | Mottolo Pig Farm, NH
(03/29/91) | Soil vapor
extraction | Uncontrolled waste
site | Soil (3,400 cy) | VOCs (TCE, TCA,
Vinyl Chloride,
DCA, DCE,
Toluene,
Ethylbenzene) | Operational;
Completion
planned Spring
1995;
Operation
started
October 1993 | Federal lead/Fund Financed; Metcalf & Eddy (prime contractor) OH Materials (subcontractor) | Roger Duwart
617-573-9628
Joe Donovan
(NH)
603-271-2911 | | 1 | South Municipal Water
Supply Well*, NH
(09/27/89)
See also Other
Technologies | Soil vapor
extraction ; Air
sparging of gw | Ball bearing
manufacturing | Soil (7,500 cy),
Groundwater | VOCs (PCE, TCA, TCE) | Installed but
not
operational;
Operation
begins October
1994:
Completion
planned 2011 | PRP
lead/Federal
oversight | Roger Duwart
617-573-9628
Tom Andrews
(NH)
603-271-2910 | | 1 | Tibbetts Road*, NH (09/29/92) | Soil vapor extraction | Illegal dumping
site, primarily
painting wastes
and solvents | Soil (50,000 cy)
down to 20 feet | VOCs (PCE, TCE) | Predesign | In negotiation | Darryl Luce
617-573-5767
Tom Andrew (NH)
603-271-2010 | | 1 | Tinkham Garage (OU
1)*, NH (09/30/86) | Soil vapor
extraction
(carbon
absorption for
air emissions) | Illegal dumping
site | Soil (9,000 cy) | VOCs (TCE,
Chloroform, DCE,
Vinyl chloride,
Benzene) | In design;
Operation
scheduled to
begin summer
1994 | PRP
lead/federal
oversight;
Terra Vac | Jim DiLorenzo
617-223-5510 | # Soil Vapor Extraction (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|---|--|--|---|--| | 1 | Peterson/Puritan Inc.
(OU 1), RI (09/30/93)
See also Other
Technologies | Soil vapor
extraction | Custom manufacturing facility Industrial and commercial area | Soil (quantity unknown) | VOCs (1,1,1 - TCA, PCE, TCE) | Predesign; EPA
negotiating
with PRP | State lead/Fund
Financed | Dave Newton
617-573-9612
Leo Hellested
(RI)
401-277-2797 | | 1 | Picillo Farm Site, RI
(09/27/93) | Soil vapor
extraction | Disposal area | Soil (131,000 cy) | VOCs, SVOCs,
Biocides, PCBs | Predesign; EPA
negotiating
with PRP | Federal
lead/Fund
Financed | Anna Krasko
617-573-5749 | | 1 | Stamina Mills, RI
(09/28/90) | Soil vapor
extraction | Textile
manufacturing | Soil (6,000 cy)
to a depth of 12
feet | VOCs (DCE, TCE) | Predesign; PD
completion
planned
January 1995 | PRP
lead/Federal
oversight;
Environmental &
Safety Design
Inc. | Neil Handler
617-573-9636
Mark Dennen
(RI)
401-277-2797 | | 2 | A O Polymer, Soil
treatment phase, NJ
(06/28/91) | Soil vapor
extraction
(carbon
adsorption for
air emissions) | Polymer
manufacturing | Soil (7,500 cy)
to a depth of 30
feet | VOCs (TCE, TCA,
Trichlorofluorome
thane, Toluene,
Ethylbenzene),
SVOCs
(Naphthalene,
4-methylphenol) | In design;
Remedial
construction
will be
completed Fall
1994 | PRP
lead/Federal
oversight;
Harding-Lawson | Rich Puvogel
212-264-9836 | | 2 | FAA Technical Center*,
NJ (09/26/89)
See also
Bioremediation (In
Situ) | Soil vapor
extraction | Jet fuel tank farm | Soil (33,000 cy) | VOCs (BTEX),
SVOCs
(Chlorophenol,
Phenol) | Being
installed;
Operation
scheduled
1/95;
completion
scheduled for
2000 or later | Federal
Facility, FAA
lead; R.E.
Wright (prime
contractor) | Carla Struble
212-264-4595
Keith Buch
(FAA)
609-485-6644 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|---|--|---|---|--|---| | 2 | Garden State Cleaners,
NJ (09/26/91) | Soil vapor
extraction | Dry cleaners | Soil (300 cy) 25
ft deep; 3 feet
by 10 feet | VOCs (PCE) | Operational;
Operation
began in June
1994 | Federal
lead/Fund
Financed | Sharon Atkinson
212-264-1217 | | 2 | Naval Air Engineering
Center, OU 23, NJ
(09/27/93) | Soil vapor
extraction | Fuel storage farm | Soil (3,500 cy) | VOCs, PAHs (TPH,
Naphthalene) | In design;
Design
completion
planned Fall
1994 | Federal
Facility/
Federal
Oversight | Jeff Gratz
212-264-6667 | | 2 | South Jersey Clothing,
NJ (09/26/91) | Soil vapor
extraction | Dry cleaners,
Clothing
manufacturer | Soil (1,400 cy)
to a depth of 25
feet | VOCs (TCE) | In design;
Design
completion
planned Winter
1995 | Federal
lead/Fund
Financed; USACE
(design) | Sharon Atkinson
212-264-1217 | | 2 | Sморе Oil & Chem Co.,
OU 2, NJ (09/27/91) | Soil vapor
extraction
Vacuum
extraction.Biove
nting (Not
planned yet) | Chemical
reclamation | Soil (253,000 cy)
2 acres, to a
depth of 80 feet | VOCs (TCE, PCE,
Toluene,
Ethylbenzene,
Xylene) | In design;
Design
completion
planned Spring
1995 | PRP
lead/Federal
oversight;
Geraghty &
Miller (design) | Joseph Gowers
212-264-5386 | | 2 | Applied Environmental
Services, OU 1, NY
(06/24/91)
See also
Bioremediation (In
Situ), Other
Technologies | Soil vapor
extraction with
air flushing
with air
sparging; area
will be covered | Bulk petroleum and
hazardous waste
storage facility,
fuel blending | Soil depth to gw
averages 8 ft | VOCs (BTEX) | Design completed but not installed; Design completed in 3/94; construction to start in Summer of 1994 | PRP lead/State
oversight; -
Remediation
Technologies,
Inc. | Mel Hauptman
212-264-7681
John Grathwol
(NY)
518-457-9280 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|--|--------------------------------------|---|--|--| | 2 |
Circuitron
Corporation, OU 1, NY
(03/29/91) | Soil vapor
extraction | Electroplating | Soil (900 cy) to
a depth of 30 ft | VOCs (TCA, PCE,
TCE, DCA) | In design;
Design
completion
planned Fall
1994 | Federal
lead/fund
Financed; ICF
(design
contractor) | Miko Fayon
212-264-4706 | | 2 | Genzale Plating
Company, OU 1, NY
(03/29/91) | Soil vapor
extraction
precedes
excavation for
off-site
solidification | Electroplating | Soil (275 cy) to
a depth of 30 ft | VOCS (ICE, TCA) | In design;
Design
completion
planned Fall
1994 | Federal
lead/Fund
Financed;
Ebasco | Miko Fayon
212-264-4706 | | 2 | Mattiace
Petrochemicals
Company, OU 1, NY
(06/27/91) | Soil vapor
extraction | Organic chemicals
blending | Soil (17,000 cy)
to a depth of 40
feet | VOCs (PCE, TCE,,
Benzene, Xylene) | Predesign; PD
completion
planned Fall
1994 | Federal
lead/Fund
Financed | Edward Als
212-264-0522 | | 2 | Pasley Solvents and
Chemicals, Inc., NY
(02/24/92)
See also In situ
Flushing | Soil vapor
extraction | Tank farm and chemical distribution facility | Soil (13,000 cy)
down to 30 feet
deep | VOCs (TCE, PCE,
Benzene) | In design;
Negotiation
with PRP is
going on for
new design. | Federal
lead/Fund
Financed;
Ebasco (design
contractor) | Sherrel Henry
212-264-8675
Jim Bologna
(NY)
518-459-3976 | | 2 | SMS Instruments (Deer
Park), NY (09/29/89) | Soil vapor
extraction with
catalytic
combustor for
vapors | Military aircraft
component
overhauler | Soil (1,250 cy)
to a depth of 25
feet | VOCs (TCE,
Dichlorobenzene) | Completed;
Operational
from 4/92 to
12/93 | Federal
lead/Fund
Financed; Four
Seasons | Miko Fayon
212-264-4706 | | 2 | Vestal Water Supply
1-1, NY (09/27/90) | Soil vapor
extraction | Industrial park | Soil (25,000 cy)
Both areas =
25,000 cy, to 28
ft depth | VOCs (DCA, TCA,
TCE, DCE) | In design;
Design
completion
planned Summer
1994 | Area 2 - Fund
lead; Area 4 -
PRP lead S.V.E | Ed Als
212-264-0522 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--|---|---|---|--|-------------------------------------| | 2 | Janssen Inc., PR
(09/30/93) | Soil vapor
extraction | Pharmaceutical
Manufacturing | Soil (quantity
unknown) | VOCs (Chloroform) | Being
installed;
Installation
completion
planned Fall
1994 | Federal
lead/Fund
Financed | Adalberto
Bosque
809-729-6951 | | 2 | Upjohn Manufacturing
Co., PR (09/30/88) | Soil vapor
extraction | Industrial
facility, chemical
leak | Soil (quantity
unknown) | VOCs (Carbon
Tetrachloride,
Acetonitrile) | Completed;
Operational
1/83 - 3/88 | PRP
lead/Federal
oversight;
Terra Vac | Alison Hess
212-264-6040 | | 3 | Delaware Sand and
Gravel, DE (09/30/93)
See also
Bioremediation (In
Situ) | Soil vapor
extraction | Landfill site drum
disposal area | Soil (50,000 cy) | VOCs (Benzene,
TCE, PCE,
Methylene
Chloride) | Predesign; In
negotiaton | PRP
lead/Federal
oversight | Eric Newman
215-597-0910 | | 3 | Bendix, PA (09/30/88) | Soil vapor
extraction with
air flushing | Aircraft
instrumentation
manufacturing | Soil (33,000 cy)
to a depth fo 10
feet | VOCs (PCE, TCE,
Vinyl Chloride) | Predesign;
Treatability
study
completed and
being reviewed | PRP
lead/Federal
oversight; ERM,
Inc. | Jim Harper
215-597-6906 | | 3 | Cryochem, OU 3, PA (09/30/91) | Soil vapor
extraction | Machine shops,
Metal fabrication | Soil (70 cy) up
to 4 ft deep | VOCs (TCA, TCE,
PCE, DCA, DCE) | In design;
Design
completion
planned Summer
1995 | Federal
lead/Fund
Financed; CH2M
Hill | Joe McDowell
215-597-8240 | | 3 | Lord-Shope Landfill*,
PA (06/29/90) | Soil vapor
extraction
(method to be
determined in
design) | Industrial
landfill | Soil (270,000 cy)
to a depth of 30
feet | VOCs (PCE, TCE,
Vinyl Chloride,
Alcohols,
n-butanol), SVOCs
(Ketones) | Design
completed but
not installed | PRP
lead/Federal
oversight;
Eckenfelder | Dave Turner
215-597-3218 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|---|--|---|--|---| | 3 | Raymark*, PA
(12/30/91) | Soil vapor
extraction | Multi-source metal
fabrication
facility | Soil (quantity
unknown), Solids
bedrock | VOCs (TCE, PCE, 1,2-DCE) | Operational;
since May 1994 | Federal
lead/Fund
Financed | Harry Harbold
215-597-1101 | | 3 | Saegertown Industrial
Area Site, PA
(01/29/93)
See also Other
Technologies | Soil vapor
extraction | Industrial park
(Lord Corp.
property) | Soil (quantity
unknown) | VOCs (TCE, TCA) | In design;
Design
completion
planned Fall
1995 | PRP
lead/Federal
oversight | Steve Donohue
215-597-3166
Bob Kimball
814-332-6075 | | 3 | Tyson's Dump*, PA
(03/31/88) | Soil vapor
extraction with
air flushing
(The system has
been modified
during
operations) | Abandoned septic
and chemical waste
disposal site | Soil (30,000 cy)
with some
DNAPL,to a depth
of 30 feet | VOCs (Benzene,
Toluene, Xylene),
SVOCs (Trichloro-
propane) | Operational;
since 11/88;
completion
date unknown | PRP
lead/Federal
oversight;
Terra Vac | Eugene Dennis
215-597-3153 | | 3 | Arrowhead
Associates/Scovill, OU
1, VA (09/30/91) | Soil vapor
extraction with
air flushing | Electroplating | Soil (1,000 cy)
depth unknown | VOCs (TCE, PCE) | Predesign; In
negotiation
with PRP | PRP
lead/Federal
oversight; ICF
Kaiser | Ron Davis
215-597-1727 | | 3 | Defense General Supply
Center, OU 5*, VA
(03/25/92) | Soil vapor
extraction (one
extraction well) | Cleaning and
repainting of
combat helmets and
gas cylinders | Soil (1,000 cy) | VOCs (PCE, TCE) | Completed;
Consisted of
pilot study
12/1/92-12/11/
92; after
which soil
samples showed
no further
contamination | Federal
Facility DLA
Lead/Federal
oversight;
Engineering-Sci
ence | Jack Potosnak
215-597-2317
Bill Sadington
(DGSC)
804-279-3781 | | 4 | Hollingsworth
Solderless, FL
(04/10/86) | Soil vapor
extraction | Electroplating | Soil (60 cy) | VOCs (TCE, Vinyl
chloride) | Completed;
Operational
from 1/91 to
7/91 | Federal
lead/Fund
Financed;
Ebasco | John Zimmerman
404-347-2643 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--|--|---|--|--|--| | 4 | Robins AFB, Landfill
and Sludge Lagoon, OU
1, GA (06/28/91) | Soil vapor
extraction | Federal facility,
sludge from an
industrial waste
water treatment
plant | Soil (15,000 cy)
combined, to a
depth of 8 feet,
Sludge (quantity
unknown) | VOCs (TCE, PCE,
Vinyl Chloride,
Carbon
Tetrachloride) | Predesign; PD
completion
planned Summer
1994 | Federal
Facility, USAF
Lead/Federal
Oves | Liz Wilde
404-347-3016 | | 4 | Charles Macon Lagoon,
Lagoon #7, OU 1, NC
(09/30/91) | Soil vapor
extraction with
air flushing | Petroleum refining
and reuse, Drum
storage/disposal,
Waste oil recycler | Soil (1,300 cy)
combined | VOCs (PCE) | In design;
Design
completion
planned Summer
1994 |
PRP
lead/federal
oversight; RMT | Giezelle
Bennett
404-347-7791
David Lown (NC)
919-733-2801 | | 4 | JADCO-Hughes, NC
(09/27/90)
See also In situ
Flushing | Soil vapor
extraction with
horizontal wells
Followed by in
situ flushing
with same ports | Plastics manufacturing, Other organic chemical manufacturing, Other inorganic chemical manufacturing, Drum storage/ disposal, Municipal water supply | Soil (6,000 cy) | VOCs (Carbon
tetrachloride,
Chloroform, Vinyl
chloride, BTX),
SVOCs
(Dichlorobenzene,
Trichlorobenzene) | In design;
Design
completion
planned
December 1994 | PRP lead/Federal oversight; Conestoga-Rover s & Associates (prime contractors) | Micheal
Townsend
404-347-7791
Bruce Nicholson
(NC)
919-733-2801 | | 4 | USMC Camp Lejeune
Wilitary Base, OU 2,
NC (09/24/93) | Soil vapor
extraction | Drum storage/
disposal | Soil (16,500 cy) | VOCs (DCE, PCE,
TCA, Vinyl
Chloride) | In design;
Design
completion
planned Fall
1994 | USMC
Lead/Federal
Oversight | Gena Townsend
404-347-3016 | | 4 | Medley Farm, OU 1, SC (05/29/91) | Soil vapor
extraction | Other organic
chemical
manufacturing,
Rubber
manufacturing,
Drum storage/
disposal | Soil (50,000 cy)
maximum depth
60ft | VOCs (DCA, DCE,
TCA, TCE, PCE,
Methylene
Chloride), SVOCs
(Phthalates) | Design
completed but
not installed;
Installation
completion
planned for
January 1995 | PRP
lead/Federal
oversight; RMT,
Inc. | Ralph Howard
404-347-7791
Richard Haynes
(SC)
803-734-5487 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|--|---|--|--|-------------------------------| | 4 | SCRDI Bluff Road, SC
(09/12/90) | Soil vapor
extraction with
air flushing | Drum storage/
disposal, Solvent
recovery | Soil (45,000 cy)
to a depth of 12
feet | VOCs (TCA, TCE,
PCA, PCE, DCA,
DCE, MEK,
Chlorobenzene,
BTEX) | In design;
Design
completion
planned Summer
1994 | PRP
lead/Federal
oversight; ERM
DeMaximus to
organize all
PRPs
contractors | Steve Sandler
404-347-7791 | | 4 | Carrier Air
Conditioning*, TN
(09/03/92) | Soil vapor
extraction with
air flushing | Manufacturer of
heating and air
conditioning units | Soil (76,500 cy) | VOCs (TCE) | Design
completed but
not installed;
Design-
completion
planned Fall
1994 | PRP
lead/Federal
oversight;
Environmental
Safety &
Designs, Inc. | Beth Brown
404-347-7791 | | 5 | Acme Solvent Reclaiming, Inc. OU 3 & OU 6, IL (12/31/90) See also Thermal Description | Soil vapor
extraction with
air flushing for
OU 6 | Industrial
landfill,
Municipal water
supply | Soil (quentity
unknown) | VOCs (DCA, TCA,
DCE, TCE, PCE,
Vinyl Chloride,
Benzene) | In design;
Design
completion
planned Summer
1994 | PRP
lead/federal
oversight;
Harding/Lawson | Deborah Orr
312-886-7576 | | 5 | American Chemical
Services*, IN
(09/30/92)
See also Thermal
Desorption | Soil vapor
extraction with
air flushing
bioenhancement
for SVOCs;air
flushing
w/vertica wells | Other organic
chemical
manufacturing,
Solvent recovery | Soil (100,000 cy)
15 to 20 ft deep | VOCs, PCBs | Predesign;
Schedule
pending
completion of
negotiation | In negotiation | Bill Bolen
312-353-6316 | | 5 | Enviro. Conservation
and Chemical (ROD
Amendment), IN
(06/07/91) | Soil vapor
extraction with
air flushing | Chemical recycler
(solvents) | Soil (quantity
unknown) | VOCs (Toluene,
Ethylbenzene,
Xylene), SVOCs
(Dichlorobenzene,
Phenol), Organics
(BNAs) | In design;
Design
completion
planned for
Fall 1995 | PRP
lead/Federal
oversight | Karen Vendl
312-886-4739 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|---|---|---|---|-------------------------------| | 5 | Fisher Calo Chem, IN
(08/07/90) | Soil vapor
extraction | Municipal water
supply | Soil (29,500 cy) | VOCs (PCE, DCA,
TCA) | In design;
Design
completion
planned Summer
1995 | PRP
lead/Federal
oversight;
Connestoga
Rovers - Prime | Jeff Gore
312-886-6552 | | 5 | MIDCO I, IN (06/30/89) | Soil vapor
extraction | Industrial
landfill | Soil (10,000 cy)
to a depth of 4 -
8 feet | VOCs (TCE,
Dichloromethane,
Chlorobenzene,
2-Butanone, BTX),
SVOCs (Phenols),
PAHs | Predesign; PD
completion
planned Winter
1994;
Implementation
planned for
1996 | PRP
lead/Federal
oversight; ERM
Northcentral-pr
ime | Richard Boice
312-886-4740 | | 5 | MIDCO II, IN
(06/30/89) | Soil vapor
extraction | Drum storage/
disposal | Soil (12,200 cy) | VOCs (Methylene
chloride, TCE,
2-Butanone,
Toluene) | Predesign; PD
completion
planned Winter
1996;
Bench-scale
treatability
study is
underway | PRP
lead/Federal
oversight; ERM
Morthwest-prime | Rich Boice
312-886-4740 | | 5 | Main Street Well
Field, IN (03/29/91) | Soil vapor
extraction with
horizontal wells | Solvent recovery,
Water supply
contamination from
many sources | Soil (22,000 cy)
to a depth of 10
feet | VOCs (TCE) | In design; East site (60% design completion by June 1, 1993)/ West site (95 % design in progress) | PRP
lead/Federal
oversight;
Geraghty &
Miller | Deborah Orr
312-886-7576 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|--|---|--|---|------------------------------| | 5 | Seymour Recycling, IN
(09/30/87)
See also
Bioremediation (In
Situ) | Soil vapor
extraction (No
need for
emissions
treatment) | Chemical waste
management and
incineration | Soil (200,000 cy)
12 acres to a
depth of 10 feet | VOCs (TCA, Carbon
tetrachloride,
PCE, TCE, Vinyl
chlorie, Benzene) | Operational;
Completion
planned Spring
1995 | PRP lead/Federal oversight; Canonie Engineering (installation), Geraghty & Miller (operation) | Jeff Gore
312-886-6552 | | 5 | Wayne Waste
Reclamation, IN
(03/30/90) | Soil vapor
extraction with
air flushing | Municipal
landfill, Oil
reclamation | Soil (300,000 cy)
10 acres to a
depth of 20 feet | VOCs (TCE, DCE,
Vinyl chloride,
BTEX) | Design
completed but
not installed;
Design
completed Feb
2/94 | PRP
lead/Federal
oversight;
Warzyn, Inc. | Duane Heaton
312-886-6399 | | 5 | Chem Central, MI
(09/30/91) | Soil vapor
extraction
(vapor treatment
through carbon) | Chemical packaging and distribution | Soil (6,200 cy)
to 8 ft deep | VOCs (DCE, TCE,
TCA, BTEX), SVOCs
(Naphthalene,
2-methyl
naphthalene) | In design;
Design
completion
planned Summer
1994 | PRP
lead/Federal
oversight; WW
Engineering &
Science | Colleen Hart
312-353-8752 | | 5 | Clare Water Supply, MI
(09/16/92) | Soil vapor
extraction with
horizontal wells
air flushing
with vertical
wells | Industrial area
with above/below
ground tanks
multisource
groundwater site | Soil (54,800 cy)
vadose zone &
dewatered area to
25 ft deep | VOCs (TCE, DCE,
Vinyl chloride,
BTEX) | Predesign;
Design planned
to begin
Spring 1994 | Federal Lead/
PRP Funded;
Seacore
Environmental
Engineering | Jon Peterson
312-353-1264 | | 5 | Electro-Voice, OU 1,
MI (06/23/92) | Soil vapor
extraction | Audio equipment
manufacturer | Soil (2,100 cy)
down to 50 feet | VOCs (TCE, PCE,
Vinyl chloride),
PAHs | Predesign; PD
completion
planned Spring
1994 |
PRP
lead/Federal
oversight;
Fishbeck,
Thompson, Carr,
& Huber | Eugenia Chow
312-353-3156 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|---|--|--|---|--| | 5 | Kysor of Cadillac
Industrial*, MI
(09/29/89) | Soil vapor
extraction | Machine shops,
Truck parts
manufacturing | Soil (13,200 cy) | VOCs (TCE,
Xylene, Toluene,
Ethylbenzene) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight;
Fishbeck,Thomps
on,Carr,& Huber | Leah Evison
312-886-4696 | | 5 | Peerless Plating, MI
(09/21/92) | Soil vapor
extraction with
horizontal wells | Electroplating | Soil (6,500 cy)
depth to 7 feet | VOCs (1,2-DCE,
TCE, Benzene,
Ethylbenzene) | In design;
Design
completion
planned
December 1994 | Federal
lead/Fund
Financed; PRC
Environmental
Management,
Inc. | Tom Pay
312-886-5991 | | 5 | Springfield Township
Dump, MI (09/29/90) | Soil vapor
extraction | Industrial
landfill | Soil (28,000 cy) | VOCs (TCE, TCA,
Chlorobenzene,
Toluene) | In design;
negotiating
with PRP | PRP
lead/Federal
oversight | Mary Lou Martin
312-353-9660 | | 5 | Sturgis Municipal Well
Field, MI (09/30/91) | Soil vapor
extraction | Solvent recovery | Soil Area and
depth unknown, <
200 ft. deep | VOCS (TCE, PCE,
TCA) | Predesign; PD
completion
planned Fall
1994 | State lead/Fund
Financed | Terese Van
Donsel
312-353-6564
Steve Padovani
312-353-6755 | | 5 | ThermoChem, Inc. OU 1, M1 (09/30/91) | Soil vapor
extraction with
air flushing;
May include
biological
enhancement | Recycling facility
for organic
solvents. | Soil (50,000 cy)
to a depth of 17
- 32 feet | VOCs (PCE, TCE,
Ethylbenzene,
Xylene) | In design | Federal
lead/Fund
Financed; ACOE
(Design) | Jim Hahnenberg
312-353-4213 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|---|--|--|--|---| | 5 | Verona Well Field
(Thomas
Solvent/Raymond
Road)*, MI (08/12/85) | Soil vapor
extraction (with
Mitrogen
sparging during
part of
operation) | Municipal water
supply | Soil (35,000 cy)
one half acre to
a depth of 18
feet | VOCs (Dichloromethane, Chloroform, Carbon Tetrachloride, BTEX, Vinyl chloride), SVOCs (Napthalene) | Completed;
Operational
from 3/88 to
5/92 | Federal
lead/Fund
Financed; Terra
Vac
(subcontractor
to CH2M Hill) | Margaret
Guerriero
312-886-0399 | | 5 | Verona Well Field, OU
2, MI (06/28/91) | Soil vapor
extraction
Augmentation
with air
flushing is
being considered | Machine shops,
Municipal water
supply | Soil (30,000 cy) | VOCs (PCE, TCA,
Toluene) | Operational | PRP lead/Federal oversight; Geraghty & Miller (Prime), Maumee Bay (Remedial subcontractor) | Margaret
Guerriero
312-886-0399 | | 5 | Long Prairie
Groundwater
Contamination, MN
(06/27/88) | Soil vapor
extraction with
air flushing
followed by GAC
for off-gas | Dry cleaners | Soil (3,600 cy)
to a depth of 15
feet | VOCs (DCE, PCE,
TCE, Vinyl
chloride) | Design
completed but
not installed;
Installation
to begin
Spring 1995 | State lead/Fund
Financed | Jan Bartlett
312-886-5438
Maureen Johnson
(MN)
612-296-7353 | | 5 | Miami County
Incinerator, OH
(06/30/89) | Soil vapor
extraction with
air flushing
Treatment of
off-gas
determined in
design | Municipal
landfill, Surface
impoundment | Soil and solids
combined (98,000
cy) | VOCs (TCE, PCE,
Toluene) | In design;
Design
completion
planned Spring
1995 | PRP
lead/Federal
oversight;
Connestogo
Roveis-Prime | Anthony Rutter
312-886-8961 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|---|---|---|--|---| | 5 | Pristine (ROD
Amendment)*, OH
(03/30/90)
See also Thermal
Desorption | Soil vapor
extraction with
horizontal
trenches down to
15 feet | Industrial waste
treatment facility | Soil (19,400 cy)
3 acres and 15
feet deep | VOCs (Chloroform,
DCA, PCE, TCE,
Benzene), SVOCs
(Phenol) | Being
installed;
installation
to be
completed late
1994; will
operate 7-10
years | PRP
lead/Federal
oversight;
Canonie
(installation) | Thomas Alcamo
312-886-7278 | | 5 | Skinner Landfill
(OU2), OH (O6/O4/93) | Soil vapor
extraction | Sanitery landfill
and buried
industrial waste
Lagoon | Soil (quantity
unknown) | VOCs
(Toluene,Xylene,
TCA) | Predesign; PD
completion
planned Summer
1995;
evaluating
technical
feasibility | PRP
lead/federal
oversight | Bruce
Sypniewski
312-886-6189 | | 5 | Zanesville Well Field,
OH (09/30/91)
See also Soil Washing | Soil vapor
extraction with
horizontal wells
followed by
excavation and
soil washing for
metals | Solvent recovery,
Auto parts
manufacturing | Soil (36,000 cy) | VOCs (TCE, DCE) | In design;
Design
completion
planned Fall
1994 | PRP
lead/federal
oversight | Dave Wilson
312-886-1476
FTS-886-1476 | | 5 | City Disposal
Corporation Landfill,
WI (09/28/92) | Soil vapor
extraction | Industrial
landfill,
Municipal landfill | Soil (quantity
unknown) quantity | VOCs
(Tetrahydrofuran) | Predesign; PD
completion
planned Fall
1994 | PRP
lead/Federal
oversight; Rust
Environmental
(prime
contractor) | Russ Hart
312-886-4844
Mike Schmoller
(WI)
608-275-3303 | | 5 | Hagen Farm Source
Control OU, WI
(09/17/90) | Soil vapor
extraction | Industrial and
municipal waste
disposal | Soil (67,000 cy) | VOCs (Vinyl
chloride,
2-Butanone,
BTEX), Organics
(Tetrahydrofuran) | Operational;
Completion
planned Summer
1996 | PRP
lead/Federal
oversight;
Warzyn-Prime | Steve Padovani
312-353-6755 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|--|--|---|---|---------------------------------------| | 5 | Muskego Sanitary
Landfill, Interim
Action OU 1, WI
(06/12/92) | Soil vapor
extraction | Industrial
landfill,
Municipal landfill | Soil (300 cy)
approximately 1
acre down to 15
ft deep | VOCs (Vinyl
Chloride,
1,2-DCA,
Methylene
Chloride, BTEX) | Design
completed but
not installed;
Installation
planned Summer
1994 | PRP
lead/Federal
oversight; Rust
(Design) | Bill Haubold
312-353-6261 | | 5 | Wausau Groundwater
Contamination, WI
(09/29/89) | Soil vapor
extraction
Off-Gas
Treatment | Machine shops,
Bulk chemical
distribution | Soil (1,300 cy)
to a depth of 30
feet | VOCs (TCE, DCE,
PCE) | Operational;
Completion
planned Summer
1995 | PRP lead/Federal oversight; Hydrogeo-Chem (sub to Conestoga-Rover s & Associates) | Margaret
Guerriero
312-886-0399 | | 6 |
Prewitt Abandoned Refinery, NM (09/30/92) See also Bioremediation (Ex Situ), Other Technologies | Soil vapor
extraction with
Air Sparging | Crude oil refinery | Soil (quantity
unknown) | Organics (NAPLs) | Predesign | PRP
lead/Federal
oversight | Monica
Chapa-Smith
214-655-6780 | | 6 | Petro-Chemical
Systems, Inc., OU 2,
TX (09/06/91)
See also Other
Technologies | Soil vapor
extraction with
air flushing and
air sparging of
groundwater | Petroleum refining
and reuse | Soil (300,000 cy)
to a depth of 30
feet | VOCs (BTEX),
SVOCs
(Naphthalene) | Predesign; PD
completion
planned Summer
1995 | PRP
lead/Federal
oversight | Chris Villareal
214-655-6758 | | 7 | Chemplex (OU 2), IA
(05/12/93) | Soil vapor
extraction | Landfill | Soil (350,000 cy) | VOCs (Benzene,
TCE) | Predesign;
Negotiations
with PRPs
ongoing | Federal
lead/Fund
Financed | Nancy Johnson
913-551-7703 | June 1994 # Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--------------------------|---|---|--|---|---|---| | 7 | McGraw Edison, IA
(09/24/93) | Soil vapor
extraction | Former
manufacturing unit | Soil (quantity
unknown) | VOCs (TCE) | Predesign;
Unilateral
Order for
RD/RA is
prepared | Federal
lead/Fund
Financed | Pauletta France
913-551-7701 | | 7 | Coleman Operable Unit
29th and Mead, KS
(09/29/92) | Soil vapor
extraction | Formerly vehicle manufacturing, currently heating, air conditioning equipment manufacturing | Soil (2,000,000
cy) | VOCs (TCE,
1,1,1-TCA, DCE,
Vinyl chloride,
Toluene) | Predesign; PD completion planned Fall 1994; Soil vapor system already in place. ROD calls for expansion of the system | PRP
lead/Federal
oversight;
Groundwater
Technologies,
Inc. | Ken Rapplean
913-551-7769 | | 7 | Hastings GW
Contamination
(Colorado Ave)*, NE
(09/28/88) | Soil vapor
extraction | Industrial metal finishing/cleaning | Soil (42,700 cy) | VOCs (PCE, TCE, DCE, TCA) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight; ENSR
(design
contractor) | Darrel
Sommerhauser
913-551-7711
Richard
Schlenker (NE)
402-471-3388 | | 7 | Hastings GW
Contamination (Far-Mar
Co.)*, NE (09/30/88) | Soil vapor extraction | Former grain
storage area
(fumigants) | Soil targeting
layers at 35 ft
and 110 ft | VOCs (Carbon
tetrachloride,
Ethylene
dibromide) | In design;
Design
completion
planned fall
1994 | PRP
lead/Federal
oversight;
Burns &
McDonald | Susan Hoff
913-551-7786 | | 7 | Hastings GW
Contamination, Well
No. 3*, NE (09/26/89) | Soil vapor extraction | Former grain
storage area
(fumigants) | Soil 1 acre down
to 120 feet deep | VOCs (Carbon
tetrachloride) | Completed;
Operational
from 7/92 to
5/93 | Federal
lead/Fund
Financed;
Morrison
Knudsen | Diane Easley
913-551-7797 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|---|---|--|--|---| | 7 | Lindsay Manufacturing,
NE (09/28/90) | Soil vapor
extraction with
air flushing
will address hot
spots only | Electroplating,
Galvanized pipes
for irrigation
systems | Soil targeting a
depth of 25 - 40
feet | VOCs (DCA, DCE,
TCE, PCE) | In design;
Design
completion
planned Summer
1994 | PRP
lead/Federal
oversight;
Dames & Moore | Cecelia Tapla
913-551-7733 | | 7 | Waverly Groundwater
Contamination, NE
(09/26/90) | Soil vapor
extraction | Grain storage
(fumigants) | Soil (160,000 cy)
up to 240,000
cy(5 acres, 20-30
ft deep) | VOCs (Carbon
tetrachloride,
Chloroform) | Operational;
Completion
planned 2001;
operational
since 2/88 | USDA
Lead/Federal
Oversight | Jeff
Weatherford
913-551-7695
Mary Hansen
(Argonne
National Lab)
708-972-4938 | | 8 | Chemical Sales
Company, OU 1±, CO
(06/27/91) | Soil vapor
extraction with
air flushing
will recirculate
treated
emissions | Chemical sales and
distribution,
spillage at tank
farm | Soil (360,000 cy)
to 35 ft deep | VOCs (PCE, TCE) | In design;
Design
completion
planned Summer
1994 | PRP
lead/Federal
oversight; ENSR | Jim Berkley
303-293-1817 | | 8 | Martin Marietta
(Denver Aerospace), CO
(09/24/90)
See also Thermal
Desorption | Soil vapor
extraction | Aerospace
equipment
manufacturer -
bulk storage
facility | Soil Less than
one acre, depth
unknown | VOCs (TCE) | In design;
Design
completion
planned Summer
1994 | PRP/State
oversite under
RCRA; Geraghty
& Miller | George Dancik
303-293-1506
Charles Johnsor
303-692-3348 | | 8 | Rocky Flats OU 2,
Interim Remedial
Action Plan, CO
(08/10/92) | Soil vapor
extraction | Former nuclear weapons research and development, production, and plutonium reprocessing complex | Soil (25,000 cy) | VOCs (TCE, PCE,
Carbon
tetrachloride) | Operational;
Completion
planned Summer
1995 | DOE Lead/Federal Oversight DOE ERP; Woodward Clyde, Roy F. Weston, Layne Environmental | Bill Frazier
303-294-1081
Scott Grace
(Rocky Flats)
303-966-7199 | June 1994 ## Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|---|--|---|---|---| | 8 | Rocky Mountain Arsenal
OU 18, interim
response, CO
(02/26/90) | Soil vapor
extraction with
air flushing | Motor pool area | Soil (70,000 cy)
100 feet radius
and 60 feet deep | VOCs (TCE,
Ethylbenzene,
Toluene) | Completed;
Operational
from 7/91 to
12/91 | U. S. Army
lead; Roy F.
Weston, Ebasco,
Harding Lawson,
Woodward Clyde | Stacey Eriksen
303-294-1083
James Smith
(Rocky Mtn
Arsenal)
303-289-0249 | | 8 | Sand Creek Industrial
OU 1*, CO (09/29/89) | Soil vapor
extraction | Pesticide
manufacturing/use/
storage, Refinery | Soil (38,000 cy) | VOCs (TCE, PCE,
Methylene
chloride,
Chloroform) | Operational;
Completion
planned Fall
1994; Removed
70 tons to
date | Federal
lead/fund
financed; OHM | Erna Acheson
303-294-1971 | | 8 | Utah Power and
Light/American Barrel,
UT (07/07/93) | Soil vapor
extraction | Coal gasification | Soil (15,000°cy) | VOCs (Styrene),
PAHs
(Naphthalene) | Predesign; PD
completion
planned Spring
1995 | PRP
lead/Federal
oversight | David Ostrander
303-293-1530 | | 9 | Hassayampa Landfill*,
AZ (08/15/92) | Soil vapor
extraction | Industrial
landfill | Soil
Approximately 10
acres | VOCs (1,1-DCE,
1,1,1-TCA,
1,2-DCE, 1,1-DCA,
TCE, 1,2-DCB) | In design; Design completion planned Spring 1995; Pilot-scale study completed | PRP
lead/Federal
oversight;
Conestoga-Rover
s, Errol L.
Montgomery &
Ass., Inc. | Robert Riccio
415-744-2369 | | 9 | Indian Bend Wash Area,
AZ (09/27/93) | Soil vapor
extraction | Dry cleaners,
Eletroplating,
Industrial
Landfill | Soil (quantity
unknown) | VOCs (TCE, PCE, DCE, 1,1,1-TCA) | In design | Federal
lead/Fund
Financed; CH2M
HILL | Emily Roth
415-744-2367
Jeff Dhont
415-744-2363
Winifred Au
(AZ)
510-251-2888
(Ext.2126) | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor
(if
available) | Contacts/Phone | |--------|--|--|---|---|--|---|--|---| | 9 | Indian Bend Wash,
South Area, OU 1, AZ
(09/12/91) | Soil vapor
extraction
May vary
technology at
different
facilities
within | Dry cleaners,
Electroplating,
Industrial
landfill,
Municipal landfill | Soil maximum
depth - 90 ft | VOCs (PCE, TCE, TCA) | In design; Pilot project under the Superfund Accelerated Cleanup Model initiative, schedules may vary by unit | PRP
lead/Federal
oversight;
mixed funding | Jeff Dhont
415-744-2363 | | 9 | Motorola 52nd Street,
AZ (09/30/88) | Soil vapor
extraction | Manufacturing
facility | Soil 60 ft radius
to a depth of 25
feet | VOCs (TCA, TCE,
DCE, PCE,,
Ethylbenzene) | In design; Design completion planned 1995; Pilot system operational but full scale technology still being evaluated | PRP lead/State
oversight;
Dames and Moore | Fred Schauffler
415-744-2359
Jeff Kulon (AZ)
602-207-4181
Hotline
602-207-4360 | | 9 | Phoenix-Goodyear
Airport Area (North &
South Fac), AZ
(09/26/89) | Soil vapor
extraction | Defense related
manufacturing | Soil (271,200 cy)
North: 1,200 cy;
South: 270,000
cy, 60 ft deep | VOCs (DCE, TCE,
MEK, Acetone) | Operational | PRP
lead/Federal
oversight;
Metcalf & Eddy
- South Area,
Malcome Pirnie
- North Area | Craig Cooper.
415-744-2370 | | 9 | Williams AFB, (OU2),
AZ (12/30/92)
See also
Bioremediation (In
Situ) | Soil vapor
extraction
Bioenhancement | AFB, Flight
Training Base | Soil (54,000 cy) | VOCs (Benzene 4,
Dichlorobenzene,
1,2-DCA Ethyl
Benzene), SVOCs | Operational;
Operation
began 3/94 | USAF (EPA
Oversite);
Earth
Technologies | Raman Mendoza
415-744-2407
Dr.William L.
Harris (USAF)
602-988-6486 | June 1994 # Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--|----------------------------|--|--|--|---| | 9 | Fairchild
Semiconductor (San
Jose)*, CA (03/20/89) | Soil vapor
extraction with
air flushing | Semiconductor
manufacturing | Soil (42,000 cy) | VOCs (TCA,
1,1-DCE,
Freon-113,
Isopropyl
alcohol, PCE),
Xylene) | Completed;
operational
from 1/89 to
5/90 | PRP lead/State
oversight;
Canonie
Engineering | Helen McKinley
510-744-1889
Steve Hill (CA)
510-286-0433 | | 9 | Fairchild
Semiconductor/MTV-I*,
CA (06/09/89) | Soil vapor
extraction | Semiconductor
manufacture and
metal finisher | Soil (quantity
unknown) | VOCs (TCE, PCE,
Vinyl Chloride,
DCA, DCE, Freon),
SVOCs (Phenol) | Design
completed but
not installed;
Installation
planned
October 1994 | PRP
lead/Federal
oversight;
Canonie
Engineering | Elizabeth Adams 415-744-2235 James Boarer (Canonie) 415-744-2231 Thomas Jones (Fairchild) 415-960-0822 | | 9 | Fairchild
Semiconductor/MTV-II*,
CA (06/30/89) | Soil vapor
extraction | Semiconductor
manufacturing,
Metal finishing
facility | Soil (50,000 cy) | VOCs (TCE, PCE,
Vinyl Chloride,
DCA, DCE, Freon),
SVOCs (Phenol) | Design
completed but
not installed;
Installation
planned
October 1994 | PRP
lead/Federal
oversight;
Canonie
Engineering | Elizabeth Adams
415-744-2235
James Boarer
(Canonie)
415-960-1640
Thomas Jones
(Fairchild)
415-960-0822 | | 9 | Hexcel, CA (09/21/93) See also Bioremediation (In Situ), Other Technologies | Soil vapor
extraction with
air flushing | Manufacturing | Soil (quantity
unknown) | VOCs (PCE,
Acetone, MEK,
Benzene) | Predesign; PD
completion
planned Fall
1994 | PRP lead/State
oversight | Mark Johnson
510-286-0305 | | 9 | IBM (San Jose)*, CA
(12/15/88) | Soil vapor
extraction | Computer
manufacture | Soil (24,000 cy) | VOCs (TCA,
Acetone, Freon,
Isopropyl
Alcohol, Xylenes) | Operational;
Completion
planned Spring
2001 | PRP lead/State
oversight;
Terra Vac | Steve Hill (CA)
510-286-0433 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--------------------------|---|----------------------------|---|---|--|---| | 9 | Intel, Mountain View*,
CA (06/09/89) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (3,000 cy) | VOCs (TCE, PCE,
Vinyl chloride,
DCA, DCE, Freon),
SVOCs (Xylene) | In design;
Operation
planned Spring
1995 | PRP
lead/Federal
oversight;
Weiss
Associates | Elizabeth Adams
415-744-2235
Eric Madera
408-522-7048
Michael Maley
(CA)
510-450-6159 | | 9 | Intersil, CA
(09/27/90) | Soil vapor
extraction | Semi conductor
manufacturing | Soil (quantity
unknown) | VOCs (TCE,
1,1,1-TCA,
Xylene) | Completed | State lead/Fund
Financed | Marie Lacey
415-744-2234
Roshy Mozafar
(CA)
510-286-1041 | | 9 | Intersil/Siemens, CA
(09/27/90) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (quantity
unknown) | VOCs (TCE,
1,1,1-TCA,
Xylene) | Operational;
Ongoing at
Siemens,
completed at
Intersil fall
1993 | State lead/Fund
Financed;
Levine-Fricke
(Siemens) | Marie Lacey
415-744-2234
Steve Morse
(CA)
510-286-0304
Roshy Mozafar
510-286-1041 | | 9 | Lawrence Livermore
National Laboratory,
CA (07/15/92) | Soil vapor
extraction | Research and
development
facility | Soil (quantity
unknown) | VOCs (Fuel
hydrocarbons) | In design | DOE
lead/Federal
oversight | Mike Gill
415-744-2383 | | 9 | Lorentz Barrel and
Drum (OU 1), CA
(08/26/93) | Soil vapor
extraction | Drum recycling
business | Soil (50,000 cy) | VOCs | Predesign;
Design to
begin Summer
1994 | Federal
lead/Fund
Financed; URS | Darrin
Swartz-Larson
415-744-2233 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--------------------------|---|----------------------------|---|--|---|---| | 9 | Monolithic
Memories/AMD - Arques,
Subunit 2, CA
(09/11/91) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (3,400 cy) | VOCS (PCE, TCE,
TCA), PAHS | Operational;
Completion
planned Fall
1996; Started
operation in
Spring 1993 | State lead/Fund
Financed;
Pacific
Environmental
Group | Cecil Felix
(CA)
510-286-1249 | | 9 | National Semiconductor
(Monolithic Memories),
CA (09/11/91) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (quantity
unknown) | VOCs (PCE, DCE,
Toluene,
Ethylbenzene,
Xylene), SVOCs | Operational;
Completion
planned Fall
1996 | State lead/Fund
Financed;
Harding Lawson
& Associates | Cecil Felix
(CA)
510-286-1249 | | 9 | Pacific Coast
Pipeline, CA
(03/31/92) | Soil vapor
extraction | Petroleum refining
and reuse,;
petroleum pumping
station | Soil (quantity
unknown) | VOCs (Methlyene
chloride, DCA,
Benzene, Toluene,
Ethylbenzene) | In design | PRP
lead/Federal
oversight | Cathy Mooremery
415-744-2243 | | 9 | Purity Oil Sales OU 2,
CA (09/30/92) | Soil vapor
extraction | Petroleum refining
and reuse | Soil (64,000 cy) | VOCs (TCE, PCE,
Chlorobenzene,
BTEX) |
Predesign; PD
completion
planned Winter
1994 | PRP
lead/federal
oversight;
Canonie | Joanne Cola
415-744-2238 | | 9 | Raytheon, Mountain
View*, CA (06/09/89) | Soil vapor
extraction | Semiconductor
manufacturing,
Metal refinishing
and aircraft
maintenance | Soil (15,000 cy) | VOCs (TCE, TCA,
DCE), SVOCs
(Phenol) | In design;
Installation
planned to
start January
1996 | PRP
lead/Federal
oversight;
Groundwater
Technology Inc. | Elizabeth Adams
415-744-2235
Eric Madera
(PRP)
415-966-7772 | | 9 | Sacramento Army Depot
(Burn Pits OU), CA
(03/29/93) | Soil vapor
extraction | Electro-Optics
equipment repair,
metal plating &
Treatment painting | Soil (16,900 cy) | VOCs, SVOCs | Operational;
Completion
planned Fall
1994;
operational
since Spring
1994 | U.S.Army
(IRP)/EPA
Oversite; OHM | Marlin Mezquita
415-744-2393
Dan Osburn
(SAD)
916-388-4344 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|--|--|---|--|--| | 9 | Sacramento Army Depot,
Tank 2 OU, CA
(12/09/91) | Soil vapor
extraction with
air flushing | Solvent storage
tank at an Army
Depot | Soil (150 cy) | VOCs (PCE,
Ethylbenzene and
Total Xylenes) | Completed;
Operational
from 8/92 to
1/93 | Army
(USACE)/DoD
Financed - IRP
Program; Terra
Vac | Paul Townsend
(USACE
Sacramento)
916-557-6947
Dan Oburn
(Sacramento
Army Depot)
916-388-4344
Marlin Mezquita
415-744-2393 | | 9 | Signetics (AMD 901)
(TRW), Signetics OU,
CA (09/11/91) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (32,000 cy)
approximately 1/4
acre down to 20
feet | VOCS (TCE, DCE,
DCA) | Operational;
Although ROD
was signed in
FY91, PRP has
operated the
remedy for
several years | PRP lead/State
oversight;
Weiss &
Associates | Darrin
Swartz-Larson
415-744-2233
Kevin Graves
(CA)
510-286-0435 | | 9 | Solvent Service, CA
(09/27/90) | Soil vapor
extraction with
heat enhancement | Solvent recycling facility | Soil (quantity
unknown) | VOCs (TCA,
Acetone,
Ethylbenzene,
Xylene), SVOCs
(Dichlorobenzene) | Operational | RWQCB; David
Keith Todd
Engineers | Marie Lacey
415-744-2234
Steve Morse
(CA)
510-286-0304
Kevin Graves
(CA)
510-286-0435 | | 9 | Spectra Physics, OU 1,
CA (03/22/91) | Soil vapor
extraction with
horizontal wells | Semiconductor
manufacturing,
Laser
manufacturing | Soil (7,200 cy) | VOCs (TCE) | Operational;
Completion
planned Winter
1997 | PRP lead/State
oversight;
Levine - Fricke | Sean Hogan
415-744-2236
Steve Hill (CA)
510-286-4833 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--------------------------|--|------------------------------------|---|--|---|--| | 9 | Van Waters and Rogers,
CA (09/30/91) | Soil vapor
extraction | Chemical packaging facility | Soil (quantity
unknown) | VOCs (PCE, TCE,
TCA) | Operational;
since Fall
1993 | PRP lead/State
oversight; Van
Waters and
Rogers | Marie Lacey
415-744-2234
Susan Gladstone
(CA)
510-286-0840 | | 9 | Watkins-Johnson*, CA
(06/29/90) | Soil vapor
extraction | Semiconductor
manufacturing | Soil (quantity
unknown) | VOCS (DCE, TCA,
TCE) | Being
installed;
operation
planned Fall
1994 | PRP
lead/Federal
oversight;
Watkins | Kay Lawrence
415-744-2289 | | 10 | Eielson Air Force
Base*, AK (09/29/92)
See also
Bioremediation (In
Situ) | Soil vapor
extraction | Tactical air
support
installation
Airplane fueling
and maintenance | Soil (quantity
unknown) | VOCs (JP-4),
SVOCs (petroleum
hydrocarbons,
diesel fuel) | Operational | Federal
Facility
lead/DERA
Funded; EA
Engineering | Mary Jane
Nearman
206-553-6642
Rielle Markey
(AK)
907-451-2117
Capt. Max Gandy
907-377-4361 | | 10 | Commencement Bay/S.
Tacoma Channel/Well
12A*, WA (05/03/85) | Soil vapor
extraction | Solvent recycler/
paint manufacturer | Soil (100,000 cy)
to 35 ft deep | VOCs (PCE, TCE,
TCA) | Operational;
Completion
planned Fall
1999 | Federal
lead/Fund
Financed; AMD
Technologies,
Inc. | Kevin Rochlin
206-553-2106 | | 10 | Fairchild AFB Priority
1 OU's (OU 1) Craig Rd
LF., WA (02/13/93) | Soil vapor
extraction | Landfill | Soil (945,700 cy) | VOCs (TCE) | In design; 60% design completed. Anticipate construction to start by 10/94 | Federal Facility, Air Force Lead/Federal Oversite; Engineering-Sci ence, Inc. | Cami
Grandinetti
206-553-8696 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--------------------------------|----------------------------|--|--|--|----------------------------| | 10 | Fort Lewis Military
Res. Lf 4 & Sol.
Refined Coal, WA
(09/24/93)
See also Soil Washing,
Other Technologies | Soil vapor
extraction with
Air Sparging | Military municipal
landfill | Soil (quantity
unknown) | VOCs (PCE, TCE,
DCE, Vinyl
Chloride) | In design;
Pilot study in
design | Federal
Facility, Army
lead/Federal
Oversight;
USACE | Rob Kiveit
206-753-9014 | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 ### Soil Washing | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|---|--|---|---|--| | 2 | King of Prussia, NJ
(09/28/90) | Soil washing
using water with
washing agents
as an additive | Waste processing facility | Soil, Sludge, and
Sediments
combined (19,200
cy) | Metals (Chromium,
Copper, Nickel) | Completed;
operational
6/93-10/93 | PRP
lead/Federal
oversight;
Alternative
Remedial
Technologies,
Inc. | Kim O'Connell
(temporary
contact)
212-264-8127 | | 2 | Myers Property, NJ
(09/28/90)
See also
Dechlorination | Soil washing
coupled with
dechlorination | Pesticide
manufacturing/use/
storage | Soil (48,000 cy),
Sediments (500
cy) | Metals (Cadmium,
Lead, Arsenic,
Copper) | In design;
Design
completion
planned Spring
1996 | PRP
lead/Federal
oversight;
Metcalf & Eddy
(Design) | John Prince
212-264-1213 | | 2 | Vineland Chemical, OU
1 and OU 2, NJ
(09/29/89)
See also In situ
Flushing | Soil Washing | Pesticide
manufacturing/use/
storage | Soil (62,000 cy) | Metals (Arsenic) | In design;
Design
completion
planned
January 1995 | Federal
lead/Fund
Financed;
Ebasco (Design) | Matthew
Westgate
212-264-3406
Steve Hadel
(USACE - Kansas
City)
816-426-5221 | | 2 | GE Wiring Devices, PR
(09/30/88) | Soil washing
using water with
KI2 solution as
an additive, | Wiring services
facility | Soil and sludge
combined (5,500
cy) | Metals (Mercury) | In design;
Design
completion
planned Spring
1995 | PRP
lead/Federal
oversight;
Morrison
Knudsen
Corporation
(Design) | Caroline Kwan
212-264-0151 | | 4 | Cabot Carbon/Koppers,
FL (09/27/90)
See also
Bioremediation (Ex
Situ),
Bioremediation
(In Situ) | Soil washing
followed by
bioremediation
of fines | Wood preserving,
Pine tar and
turpentine
manufacturing | Soil (6,400 cy) | SVOCs (PCP),
PAHs, Metals
(Arsenic,
Chromium) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight | Patsy Goldberg
404-347-6265 | ### Soil Washing (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|--|--|---|--|---| | 4 | Whitehouse Waste Oil
Pits (amended ROD)*,
FL (06/16/92)
See also
Bioremediation (Ex
Situ) | Soil washing
followed by
bioremediation
of fines | Waste oil recycler | Soil and Sludge
combined (57,000
cy) | VOCs, PCBs, PAHs,
Metals (lead) | In design;
Remedy being
reconsidered;
further site
characterizati
on is underway | Federal
lead/fund
Financed | Tony Best
404-347-6259 | | 4 | Cape Fear Wood Preserving, NC (06/30/89) See also Bioremediation (Ex Situ) | Soil washing
using water only
may be followed
by s/s | Wood preserving | Soil (24,000 cy)
up to 26,000 cy | PAHs (Creosote),
Metals (Copper,
Chromium,
Arsenic) | Design
completed but
not installed;
Construction
to begin
Summer 1995 | Federal
lead/Fund
Financed | Jon Bornholm
404-347-7791 | | 5 | Zanesville Well Field,
OH (09/30/91)
See also Soil vapor
extraction | Soil washing ex
situ preceded by
vacuum
extraction (in
situ) | Solvent recovery,
Auto parts
manufacturing | Soil (1,800 cy) | Metals (Lead,
Mercury) | Predesign; PD
completion
planned Spring
1995 | PRP
lead/Federal
oversight;
Seacore Science
& Engineering
(Design) | Dave Wilson
312-886-1476
FTS-886-1476 | | 5 | Moss-American*, WI
(09/27/90)
See also
Bioremediation (Ex
Situ) | Soil washing
followed by
bioremediation
of fines | Wood preserving | Soil (80,000 cy) | PAHS | Predesign; PD
completion
planned 1995;
Bench-scale
study underway | PRP lead/Federal oversight; Weston, Inc.(prime contractor), Bergmann USA (subcontractor) | Russ Hart
312-886-4844 | | 6 | Arkwood, AR (09/28/90) | Soil washing
followed by
incineration of
residuals | Wood preserving | Soil (20,400 cy),
Sludge (425 cy) | SVOCs (PCP),
Dioxins, PAHs | In design;
Design
completion
planned Fall
1995 | PRP
Lead/Federal
oversight;
McLaren/Hart
(Design) | Cynthia Kaleri
214-655-6772 | #### Soil Washing (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|---|---|--|---|--| | 6 | Koppers/Texarkana*, TX
(09/23/88)
See also In situ
Flushing | Soil washing
using water with
a surfactant as
an additive, | Wood preserving | Soil (19,400 cy) | PAHs
(Benzo(a)pyrene,
Creosote),
Organics (NAPLs),
Metals (Arsenic) | In design | PRP
lead/Federal
oversight; ENSR
(Design) | Ursula Lennox
214-655-6743 | | 6 | South Cavalcade
Street*, TX (09/26/88)
See also In situ
Flushing | Soil Washing | Wood preserving | Soil (11,000 cy) | PAHs
(Benzo(a)pyrene,
Benzo(a)anthracen
e, Chrysene) | In design;
Design
completion
planned Summer
1994 | PRP
lead/Federal
oversight | Glenn Celerier
214-655-8523 | | 9 | Koppers Company, Inc.
(Oroville Plant), CA
(04/04/90)
See also
Bioremediation (In
Situ) | Soil Washing | Wood preserving | Soil (200,000 cy) | SVOCs (PCPs),
Dioxins, PAHs | In design;
Remedy being
reconsidered | PRP
lead/Federal
oversight | Fred Schauffler
415-744-2359 | | 10 | Gould, Inc.*, OR
(03/31/88) | Soil washing
followed by s/s
of solid
residuals | Battery recycling/
disposal | Soil (11,000 cy),
Solids (90,000
cy) Battery
casings | Metals (Lead) | Operational;
Completion
planned Summer
1995;
Operation
started Fall
1993 | PRP
lead/Federal
oversight;
Canonie
Environmental | Chip Humphries
(EPA Oregon
operat.)
503-326-2678
Mike Moran
(Portland
USACE)
503-326-4192 | | 10 | Naval Submarine Base,
Bangor Site A, OU 1,
WA (12/06/91) | Soil Washing | Federal facility,
ordnance
detonation | Soil (7,100 cy) | Ordnance
compounds (TNT,
RDX, DNT) | Being
installed;
operation
planned to
begin 9/94 | Federal
Facility, Navy
Lead/Federal
Oversite; OHM
Remediation
Services Corp. | Jeff Rodin
206-553-4497
Chris Drury
(Navy)
206-396-5984 | #### **Solvent Extraction** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|--|---|---|--|--| | 1 | Norwood PCBs, MA
(09/29/89) | Solvent
extraction | PCB capacitor
manufacturing/
testing | Soil (50,000 cy),
Sediments (2,000
cy) | PCBs, PAHs | In design;
Design
completion
planned Summer
1994 | Federal
lead/fund
Financed | Bob Cianciarulo
617-573-5778 | | 1 | 0'Connor*, ME
(09/27/89) | Solvent
extraction (may
be followed by
s/s for lead) | Salvage and
electrical
transformer
recycling | Soil and
Sediments
combined (23,500
cy) | PCBs, PAHs | In design;
Design
completion
planned
September 1995 | PRP
lead/Federal
oversight | Ross Gilleland
617-573-5766 | | 4 | Carolina Transformer,
NC (08/29/91) | Solvent extraction (may be followed by s/s) | Transformer repair | Soil (9,000 cy) | PCBs | In design;
Design
completion
planned Spring
1995 | Federal
lead/fund
Financed | Luis Flores
404-347-7791 | | 6 | United Creosoting*, TX (09/29/89) | Solvent extraction (Critical fluid extraction followed by incineration of fluids) | Wood preserving | Soil (85,000 cy)
with "tar mats"
combined | SVOCs (PCP, trace
dioxins/furans),
PAHs | Design
completed but
not installed;
Installation
scheduled for
Summer 1995 | State lead/Fund
Financed; C.F.
Systems | Earl Hendrick
214-655-8519
LaReine Pound
(TX)
512-239-2437 | #### **Thermal Desorption** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|--|--|---|--|-------------------------------------| | 1. | Cannon
Engineering/Bridgewate
r, MA (03/31/88) | Thermal aeration
(vapors captured
on carbon) | Chemical waste
storage and
incineration
facility | Soil (11,000 cy) | VOCs (TCE, Vinyl
Chloride,
Benzene, Toluene) | Completed;
Operational
from 5/90 to
10/90 | PRP
lead/Federal
oversight;
Canonie
Engineering | Richard
Goehlert
617-573-5742 | | 1 | Re-Solve*, MA
(09/24/87) | Low temperature
thermal
treatment | Chemical
reclamation
facility | Soil (22,500 cy) | VOCs, PCBs | Operational;
Completion
planned Fall
1994 | PRP
lead/Federal
oversight;
Chemical Waste
Management,
Inc. | Joe Lemay
617-573-9622 | | 1 | McKin*, ME (07/22/85) | Thermal aeration
(vapors captured
on carbon) | Waste
storage/Transfer &
recycle facility. | Soil (11,500 cy) | VOCs (TCE, BTX) | Completed;
Operational
from 7/86 -
2/87 | PRP
lead/Federal
oversight;
Canonie
Engineering | Sheila Eckman
617-573-5784 | | 1 | Ottati &
Goss, NH
(01/16/87) | Thermal aeration | Drum storage/
disposal | Soil (16,000 cy) | VOCs (TCE, PCE,
DCA, Benzene) | Completed;
Operational
from 6/89 to
9/89 | PRP
lead/Federal
oversight;
Canonie
Engineering | Stephen Calder
617-573-9626 | | 2 | Industrial Latex, OU
1, NJ (09/30/92) | Low temperature
thermal
treatment | Manufacturing of
chemical adhesives
and natural and
synthetic rubber
compounds | Soil and
Sediments
combined (34,700
cy) | PCBs | Predesign; PD
completion
planned Fall
1994 | Federal
Lead/Fund
Financed | Romona Pezzella
212-264-8216 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|--------------------------------|--|--|--|--| | 2 | Lipari Landfill Marsh
Sediment*, NJ
(07/11/88) | Low temperature
thermal
treatment | Industrial
landfill,
Municipal landfill | Soil (57,000 cy)
marsh soil | VOCs (Chlorinated
hydrocarbons,
BTEX), SVOCs
(Bis-2-chloroethy
lether) | Being installed; Operation to begin Summer 1994; completion scheduled for late 1994/early 1995 | PRP lead/Federal oversight; Sevenson Environmental Services (prime contractor), Williams Environmental (subcontractor) | Fred Cataneo
212-264-9542 | | 2 | Metaltec/Aerosystems,
OU 1 - Soil
Treatment*, NJ
(06/30/86) | Low temperature thermal treatment (vapors captured on carbon) | Metal
manufacturing | Soil (9,000 cy) | VOCs (TCE) | Operational;
Completion
planned
December 1994 | Federal
lead/fund
Financed; USACE
conducting
design | Courtney McEnery 212-264-1251 Mark Keast (USACE, Kansas City) 816-426-5832 | | 2 | Reich Farms*, NJ
(09/30/88) | Thermal desorption (vapors will be captured on carbon) | Drum storage/
disposal | Soil (8,600 cy) | VOCs (TCE, PCE,
TCA), SVOCs
(Phthalates) | In design;
Design
completion
planned Summer
1994 | PRP
lead/Federal
oversight | Kim O'Connell
(temporary
contact)
212-264-8127 | | 2 | Universal Oil
Products, NJ
(09/30/93) | Thermal
Desorption | Chemical
processing plant | Soil (23,000 cy) | VOCs, PCBs, PAHs | In design;
Design
completion
planned Summer
1995 | State lead/Fund
Financed | Rich Puvogel
212-264-9836
Gwen Barunus
(NJ)
609-633-1455 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|---|-------------------------------------|--|--|---| | 2 | Waldick Aerospace
Devices (OU 1)*, NJ
(09/29/87) | Low temperature
thermal
treatment
(followed by
offsite s/s and
disposal) | Manufacture/
electroplating of
plane parts | Soil (4,000 cy) | VOCs (TCE, PCE) | Completed;
Operational
from 5/93 to
10/93 | Federal
lead/Fund
Financed; Rust
Remedial
Services, Inc. | John Prince
212-264-1213
George Buc
(USACE-NY
District)
908-389-3040 | | 2 | American Thermostat,
NY (06/29/90) | Low temperature
thermal
treatment | Thermostat
manufacturing | Soil (20,000 cy) | VOCs (PCE, TCE) | Operational;
Completion
planned
December 1994 | Federal lead/Fund Financed; EBASCO (prime contractor), Williams Environmental Services (subcontractor) | Christos
Tsiamis
212-264-5713 | | 2 | Claremont Polychemical
- Soil Remedy, NY
(09/28/90) | Low temperature
thermal
treatment | Paint/ink
formation | Soil (3,000 cy) | VOCs (PCE) | In design;
Design
completion
planned Summer
1994 | Federal
lead/Fund
Financed; USACE
conducting
design | Dick Kaplin
212-264-3819
- | | 2 | Fulton Terminals, Soil
Treatment, NY
(09/29/89) | Low temperature
thermal
treatment | Former hazardous
waste storage
facility | Soil (8,000 cy)
(Depth varies
from 12 to 15
feet). | VOCs (TCE, DCE,
Benzene, Xylene) | In design;
Design
completion
planned
January 1995 | PRP
lead/Federal
oversight | Christos
Tsiamis
212-264-5713 | | 2 | Reynolds Metals
Company Study Area
Site, (RMC), NY
(09/27/93) | Thermal
Desorption | Active aluminum production plant | Sediments (14,500 cy) | PCBs | In design;
Design
completion
planned
December 1995 | PRP
lead/Federal
oversight | Lisa Carson
212-264-6857 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|---|-------------------------------------|---|---|--|---| | 2 | Sarney Farm, NY
(09/27/90) | Thermal
Desorption | Industrial
landfill,
Municipal landfill | Soil (2,400 cy)
2,000 - 8,000 cy | VOCs (Chloroform,
TCE, PCE,
Toluene), SVOCs
(Phthalates) | In design;
Design
completion
planned early
1995 | Federal
lead/Fund
Financed; CDM
(Design) | Kevin Willis
212-264-8777 | | 5 | Solvent Savers, NY
(09/30/90) | Low temperature
thermal
treatment | Solvent recovery,
Chemical
reclamation | Soil (60,000 cy) | VOCs (DCE, TCE),
PCBs | Predesign; PD
completion
planned Fall
1994 | PRP
lead/Federal
oversight | Lisa Wong
212-264-9348 | | 3 | U.S.A. Letterkenny SE
Area, OU1*, PA
(06/28/91) | Low temperature thermal treatment (may need s/s for metals after thermal desorption) | Munitions
manufacturing/
storage, Drum
storage | Soil (15,000 cy) | VOCs (TCE, DCE,
Ethylbenzene,
Xylene) | Operational;
Completion
planned
November 1994;
Site work
began 7/93;
full-scale
clean up
12/93; start
up again in
5/94 | Federal
lead/Fund
Financed;
McLaren Hart | Dennis Orenshaw
215-597-7858
Brian (Berling)
(Letterkenny)
717-267-8483 | | 3 | William Dick Lagoons,
OU 3, PA (03/31/93) | Thermal
Desorption | Wastewater
disposal lagoons | Soil (24,000 cy) | VOCs (TCE, PCE,
MEK), SVOCs | Predesign; PD
completion
planned Fall
1994;
Negotiating
Consent
Decree. PRP
conducting a
treatability
study for SVE
on deep soil
layer | PRP
lead/Federal
oversight | Patrick McManus
215-597-8257 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|---|--|---|--|--------------------------------| | 3 | Rentokil, VA
(06/22/93) | Thermal
Desorption | Wood preserving | Soil (13,000 cy) | SVOCs (PCP),
Dioxins, PAHs | In design;
Design
completion
planned late
1995 | PRP
lead/Federal
oversight | Andy Palestini
215-597-1286 | | 3 | Saunders Supply Co, OU
1, VA (09/30/91)
See also
Dechlorination | Low temperature
thermal
treatment | Wood preserving | Soil (25,000 cy) | SVOCs (PCP) | In design; Design completion planned Spring 1995; Treatability studies planned | Federal
lead/Fund
Financed | Andy Palestini
215-597-1286 | | 4 | Ciba-Geigy (MacIntosh
Plant) OU 2, AL
(09/30/91)
See also In situ
Flushing | Low temperature
thermal
treatment | Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing | Soil and sludge
combined (130,000
cy) to 20 ft
depth | VOCs, Biocides | Predesign; PD
completion
planned
summer
1996;
Treatability
studies
ongoing; final
decision on
technology
will be made
late 1994 | PRP
lead/Federal
oversight | Charles King
404-347-6262 | | 4 | Ciba-Geigy (MacIntosh
Plant) OU 4, AL
(07/14/92)
See also In situ
Flushing | Thermal
Desorption | Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing | Soil and other
waste combined
(17,000 cy) | VOCs (Chloroform,
Toluene, Xylene),
Biocides
(Atrazine,
Diazinon,
Prometryn,
Simazine) | Predesign;
Treatability
studies
ongoing; final
decision on
technology
will be made
late 1994 | PRP
lead/Federal
oversight | Charles King
404-347-6262 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|---|---|---|--|--| | 4 | Smith's Farm Brooks,
OU 1*, KY (09/30/91)
See also
Dechlorination | Thermal desorption Anaerobic low temperature thermal treatment | Drum storage/
disposal | Soil (18,500 cy) | PCBs, PAHs
(Carcinogenic
PAHs) | Operational;
Completion
planned
October 1994;
Began
operation in
April 1994 | PRP
lead/Federal
oversight;
Canonie (prime
contractor),
SoilTech
(subcontractor) | Tony DeAngelo
404-347-7791 | | 4 | Aberdeen Pesticide
Dumps, (OU 1 & OU 4),
NC (09/30/91) | Thermal
Desorption | Pesticide
manufacturing/use/
storage | Soil (124,000 cy) | Biocides (DDT,
Toxaphene,
Benzene
Hexachloride) | Predesign; PD
completion
planned Spring
1995 | PRP
lead/Federal
oversight | Kay Crane
404-347-7791
Randy McElveen
(NC)
919-733-2801 | | 4 | Potter's Septic Tank
Service Pits, NC
(08/05/92) | Low temperature
thermal
treatment | Waste petroleum
and septic tank
sludge disposal
pit | Soil (10,100 cy),
Sludge (quantity
unknown) | VOCs (BTEX), PAHs
(Carcinogenic
PAHs,
Naphthalene) | In design;
Design
completion
planned Summer
1994 | Federal
lead/Fund
Financed | Beverty Hudson
404-347-7791 | | 4 | Sangamo/Twelve-Mile/Ha
rtwell PCB, OU 1, SC
(12/19/90) | Thermal
desorption
(vapors captured
on carbon) | Capacitor
manufacturer | Soil and Sludge
combined | PCBs | In design;
Design
completion
planned late
1995 | PRP
lead/Federal
oversight | Bernie Hayes
404-347-7791
Richard Haynes
(SC)
803-734-5487 | | 4 | Wamchem*, SC
(06/30/88) | Thermal desorption using catalytic oxidation of vapor | Former dye
manufacturing
plant | Soil (2,200 cy) | VOCs (BTX) | Completed;
operational
during 8/93 | PRP
lead/Federal
oversight; Four
Seasons | Terry Tanner
404-347-7791 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|--|--|---|--|--|--------------------------------| | 4 | Arlington Blending & Packaging Co., OU 1*, TN (06/28/91) | Thermal desorption, residual soil and vapor to be dechlorinated | Pesticide
manufacturing/use/
storage, Other
organic chemical
manufacturing | Soil (5,000 cy) | VOCs, SVOCs
(PCP), Biocides
(Chlordane,
Heptachlor) | In design;
Design
completion
planned Fall
1994 | PRP
lead/Federal
oversight | Derek Matory
404-347-7791 | | 5 | Acme Solvent Reclaiming, Inc. OU 3 & OU 6, IL (12/31/90) See also Soil vapor extraction | Low temperature
thermal
treatment
followed by s/s
for lead | Industrial
landfill,
Municipal water
supply | Soil (6,000 cy) | VOCs (TCA, DCE,
DCA, TCE, PCE,
Vinyl chloride,
Benzene, 4-methyl
2 pentanone),
SVOCs
(Naphthalene),
PCBs | In design;
Design
completion
planned Summer
1994 | PRP
lead/Federal
oversight;
Harding Lawson | Deborah Orr
312-886-7576 | | 5 | Outboard
Marine/Waukegan
Harbor, OU 3*, IL
(03/31/89) | Low temperature
thermal
treatment | Marine products manufacturing | Soil and
sediments
combined (16,000
cy) | PCBs | Completed;
Operational
from 1/92 to
7/92 | PRP
lead/Federal
oversight;
Soiltech | Bill Bolen
312-353-6316 | | 5 | American Chemical
Services*, IN
(09/30/92)
See also Soil vapor
extraction | Low temperature
thermal
treatment | Other organic
chemical
manufacturing,
Solvent recovery | Soil (quantity
unknown) | VOCs, PCBs | Predesign;
Schedule
pending
completion of
negotiation
with PRPs | In negotiation | Bill Bolen
312-353-6316 | | 5 | Reilly Tar and
Chemical, IN
(09/30/93) | Thermal
Desorption | Wood preserving,
Coal tar refinery
and synthethic
chemical plant | Soil (10,000 cy) | VOCs, SVOCs
(PAHs,Pyridine) | Predesign;
Scheduled to
end Summer
1994 | PRP
lead/Federal
oversight | Dion Novak
312-886-4737 | | 5 | Anderson Development
(ROD Amendment)*, MI
(09/30/91) | Low temperature thermal treatment With off-site disposal of residuals | Other organic
chemical
manufacturing | Soil and sludge
combined (5,100
cy) | Organics (MBOCAs,
4, 4'- Methylene,
Bis-2-chloroanili
ne) | Completed;
Operational
from 9/92 to
6/93 | PRP
lead/Federal
oversight;
Weston
Services, Inc | Jim Hahnenberg
312-353-4213 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|--|---|--|--|--|---|---------------------------------------| | 5 | Carter Industries*, MI
(09/18/91) | Low temperature
thermal
treatment
(followed by s/s
of soils and
incin. of PCB
oil) | Scrap metal
salvager | Soil (20,000 cy)
combined | PCBs | In design; Design completion planned Summer 1994; Installation planned to begin Fall | PRP
lead/Federal
oversight;
Connestoga-Rove
rs Associates | Jon Peterson
312-353-1264 | | 5 | Duell-Gardner
Landfill, MI
(09/07/93) | Low temperature
thermal
treatment | Industrial
landfill,
Municipal landfill | Soil (1,800 cy) | SVOCs
(Bis(2-ethyl
hexyl)Phthalate),
Biocides, PCBs | Predesign | State lead/Fund
Financed | Karla Johnson
312-886-5993 | | 5 | Ott/Story/Cordova
Chemical, MI
(09/27/93) | Thermal
Desorption | Other inorganic
chemical
manufacturing | Soil (7,800 cy),
Sediments
(quantity
unknown) | VOCs, Biocides | In design;
Design
completion
planned Summer
1995 | Federal
lead/Fund
Financed; USACE
(design) | Betty Lavis
312-886-4784 | | 5 | Pristine (ROD
Amendment)*, OH
(03/30/90)
See also Soil vapor
extraction | Thermal
desorption
Anaerobic
thermal
treatment | Industrial waste
treatment facility | Soil (13,000 cy) | SVOCs
(Pesticides,
PAHs) | Completed;
Operational
from 9/93 to
3/94 | PRP
lead/Federal
oversight | Thomas Alcama
312-886-7278 | | 7 | Sherwood Medical, NE
(09/28/93) | Thermal
Desorption | Operating
industrial
facility | Soil (quantity
unknown) | VOCs (TCE, TCA,
DCA, Vinyl
Chloride) | Predesign | Federal
lead/Fund
Financed | Steve
Auchterlonie
913-551-7778 | | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|------------------|-----------------------------|--|---|--| | 8 | Martin Marietta
(Denver
Aerospace), CO
(09/24/90)
See also Soil vapor
extraction | Low temperature thermal treatment (followed by s/s of soils and incin. of vapors) | Aerospace
equipment
manufacturer -
bulk storage
facility | Soil (2,300 cy) | VOCs (TCE), PCBs | In design;
Design
completion
planned Fall
1994 | PRP lead/State
oversight;
under RCRA;
Geraghty &
Miller | . George Dancik
303-293-1506
Charles Johnson
(CO)
303-692-3348 | | 8 | Sand Creek Industrial,
OU 5*, CO (09/28/90) | Low temperature
thermal
treatment | Pesticide
manufacturing/use/
storage | Soil (9,500 cy) | Organics
(Pesticides) | Operational;
Completion
planned Fall
1994 | Federal
lead/Fund
Financed; Rust
Remedial
Services | Erna Acheson
303-294-1971 | | 10 | Harbor Island, WA
(09/30/93) | Thermal
Desorption | General industrial
area | Soil (91,000 cy) | VOCs (TPH) | Predesign;
Negotiating
consent decree
agreement with
PRP | Federal
lead/fund
Financed | Keith Rose
206-553-7721 | ### Other | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|--|-----------------------------|--|--|---| | 1 | South Municipal Water
Supply Well*, NH
(09/27/89)
See also Soil vapor
extraction | Air sparging | Ball bearing
manufacturing | Groundwater | VOCS
(PCE,TCA,TCE) | Installed but
not
operational;
operation to
begin October
1994;
completion
planned 2011 | PRP
lead/Federal
oversight | Roger Duwart
617-573-9628
Tom Andrews
(NH)
603-271-2910 | | 1 | Peterson/Puritan Inc.
(OU 1), RI (09/30/93)
See also Soil vapor
extraction | In situ
Oxidation | Custom
manufacturing
facility
Industrial and
commercial area | Soil (1,000 cy) | Metals (Arsenic) | Predesign; EPA
negotiating
with PRP | PRP
lead/Federal
oversight | Dave Newton
617-573-9612
Leo Hellested
(RI)
401-277-2797 | | 2 | Applied Environmental
Services, OU 1, NY
(06/24/91)
See also
Bioremediation (In
Situ), Soil vapor
extraction | Air sparging | Bulk petroleum and
hazardous waste
storage facility,
fuel blending | Groundwater | VOCs (BTEX),
SVOCs, PAHS | Design
completed but
not installed | PRP lead/State
oversight | Mel Hauptman
212-264-7681
John Grathwol
(NY)
518-457-9280 | | 3 | Brodhead Creek, OU 1,
PA (03/29/91) | CROW technology
using hot water
injection to
mobilize coal
tar | Coal gasification | Soil (9,000 cy)
25-35 ft deep,
100 ft by 80 ft | PAHS | Being installed; planned to be operational August 1994; completion planned January 1995 | PRP lead/Federal oversight; Remediation Technologies, Western Research Institute | John Banks
215-597-8555 | | 3 | Brown's Battery
Breaking Site, OU 2,
PA (07/02/92)
See also Other
Technolgoies | Limestone
barrier | Battery recycling/
disposal | Groundwater | Metals (Lead) | Predesign; in
negotiation | PRP
lead/Federal
oversight | Richard Watman
215-597-8996 | ### Other (continued) | | 1 | ır . | ir | <u> </u> | | | | | |--------|--|--|---|--|--|--|---|--| | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | | 3 | Brown's Battery
Breaking Site, OU 2,
PA (07/02/92)
See also Chemical
Treatment | Fuming
gasification | Battery recycling/
disposal | Soil and solids
combined (45,000
cy) | Metals (Lead) | Predesign | PRP
lead/Federal
oversight;
negotiations
underway | Richard Watman
215-597-8996 | | 3 | Saegertown Industrial
Area Site, PA
(01/29/93)
See also Soil vapor
extraction | Air sparging | Industrial park
(Lord Corp.
property) | Groundwater | VOCs (PCE, TCA) | In design;
Design
completion
planned Fall
1995 | PRP
lead/Federal
oversight | Steve Donohue
215-597-3166
Bob Kimball
(PA)
814-332-6075 | | 3 | Tonolli Corporation,
PA (09/30/92) | Limestone
barrier | Battery recycling/
disposal | Groundwater | Metals (Lead) | Predesign; PD
completion
planned Summer
1994 | PRP
lead/Federal
oversight | Linda Dietz
215-597-6906 | | 4 | Rochester Property, SC (08/31/93) | Air sparging | Disposal site | Groundwater | VOCs (TCE, bis
(2-ethylhexyl
phthalate)) | Predesign;
Design to be
completed
Winter 1994 | PRP
lead/Federal
oversight | Sheri Panabaker
404-347-7791 | | 5 | Allied Chem & Ironton
Coke, OU 2*, OH
(12/28/90)
See also
Bioremediation (Ex
Situ), Bioremediation
(In Situ) | Land farming
magnetically
enhanced | Coke manufacturing | Soil (23,000 cy) | PAHS | In design;
Operations to
begin Spring
1995 | PRP
lead/Federal
oversight; IT
Corporation
(Design), Black
& Veetch
(Subcontractor) | Tom Alcamo
312-886-7278 | | 6 | Prewitt Abandoned Refinery, NM (09/30/92) See also Bioremediation (Ex Situ), Soil vapor extraction | Air sparging | Crude oil refinery | Groundwater | Organics (NAPLs) | Predesign | PRP
lead/Federal
oversight | Monica
Chapa-Smith
214-655-6780 | # Other (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|------------------------|---------------------------------|-----------------------------------|--|--|--|--| | 6 | Petro-Chemical
Systems, Inc., OU 2,
TX (09/06/91)
See also Soil vapor
extraction | Air sparging | Petroleum refining
and reuse | Groundwater to a depth of 30 feet | VOCs (BTEX),
SVOCs
(Naphthalene) | Predesign; PD
completion
planned Summer
1995; pilot
study planned
fall 1994 | PRP
lead/Federal
oversight | Chris Villareal
214-655-6758 | | 9 | Hexcel, CA (09/21/93) See also Bioremediation (In Situ), Soil vapor extraction | Air sparging | Manufacturing | Groundwater | VOCs (PCE,
Acetone, MEK,
Benzene) | Predesign; PD
completion
planned Fall
1994 | PRP lead/State
oversight | Mark Johnson
510-286-0305 | | 10 | Fairchild AFB,
Priority 1 OU's (OU 2)
FT-1, WA (07/14/93)
See also
Bioremediation (In
Situ) | Air sparging | Fire training area | Groundwater | VOCs (Benzene) | In design;
Treatability
studies/pilot
test 5/94 | Federal
Facility, Air
Force
lead/Federal
oversight | Carmela
Grandinetti
206-553-8696 | | 10 | Fort Lewis Military
Res. Lf 4 & Sol.
Refined Coal, WA
(09/24/93)
See also Soil Washing,
Soil vapor extraction | Air sparging | Military municipal
landfill | Groundwater | VOCs (PCE, TCE,
DCE, Vinyl
chloride) | In design;
Pilot study in
design | Federal
facility, U.S.
Army
lead/Federal
oversight | Bob Kievit
206-753-9014 | #### TABLE A-2 # REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR Table A-2 shows NPL sites at which established treatment technologies have been selected as part of the remedy. Established treatment technologies include: incineration, solidification/stabilization, and others. The sites are ordered by fiscal year to give some initial information on the status of implementation: in general, earlier RODs have progressed furthest in design and construction. **On-Site Incineration** On-Site Incineration (continued) | | | | | | <u> </u> | one memeration (continued) | | |----|--------|------------------------------|-------|------|----------|--------------------------------------|-------| | FY | REGION | SITE NAME | STATE | FY. | REGION | SITE NAME | STATE | | 85 | 2 | Bog Creek Farm | NJ | 88 | 5 | Summit National Liquid Disposal | ОН | | 85 | 2 | Bridgeport Rental & Oil | NJ | 88 | 6 | Old Midland Products | AR | | 85 | 5 | ACME Solvent | IL | 88 | 6 | Brio Refining | TX | | 85 | 6 | MOTCO | TX | 88 | 7 | Times Beach | МО | | | | | · | 88 | 8 | Broderick Wood Products | CO | | 86 | 1 | Baird & McGuire | MA | | | | | | 86 | 4 | Mowbray Engineering | AL | 89 | 1 | Baird and McGuire | MA | | 86 | 5 | LaSalle Electrical Utilities | IL | 89 | 1 |
Wells G&H | MA | | 86 | 5 | Arrowhead Refinery | MN | 89 | 2 | Bog Creek Farm | NJ | | 86 | 5 | Fields Brook | ОН | 89 | 2 | De Rewal Chemical* | NJ | | 86 | 6 | Sikes Disposal Pit | TX | 89 | 3 | Douglasville Disposal | PA | | | | - | | 89 | 4 | Smith's Farm Brooks* | Κ̈́Υ | | 87 | 1 | Ottati & Goss | NH | 89 | 4 | Aberdeen Pesticide Dumps/
Fairway | NC | | 87 | 1 | Davis Liquid Waste | RI | 89 | 4 | Celanese* | NC | | 87 | 4 | Tower Chemical | FL | 89 | - 4 | American Creosote Works | TN | | 87 | 4 | Geiger/C&M Oil | SC | , 89 | 5 | Ninth Avenue Dump | IN | | 87 | 5 | Rose Township Dump | MI | 89 | 5 | New Brighton/Arden Hills | MN | | 87 | 5 | Laskin/Poplar Oil | OH | 89 | 5 | Big D Campground | OH | | 87 | 6 | Bayou Bonfouca | LA | 89 | 5 | Laskin/Poplar Oil | OH | | 87 | 6 | Cleve Reber | LA | | | - Lusking opin on | | | | | | | 90 | 1 | New Bedford* | MA | | 88 | 1 | Rose Disposal Pit | MA | 90 | 2 | Sarney Farm | NY | | 88 | 2 | Lipari Landfill | NJ | 90 | 3 | M.W. Manufacturing* | PA | | 88 | 2 | Love Canal | NY | 90 | 5 | Sangamo/Crab Orchard* | IL | | 88 | 3 | Delaware Sand & Gravel | DE | | | National Wildlife Refuge | | | 88 | 3 | Southern Maryland Wood | MD | 90 | 5 | Fisher Calo | IN | | | | Treating | | 90 | 5 | Bofors Nobel | MI | | 88 | 3 | Drake Chemical/Phase III | PA | 90 | 5 | Springfield Township Dump* | MI | | 88 | 3 | Ordnance Works Disposal | wv | 90 | 5 | Pristine (Amendment) | ОН | | 88 | 4 | Zellwood Groundwater | FL | 90 | 5 | University of Minnesota | MN | | 88 | 5 | LaSalle Electrical Utilities | IL | 90 | 6 | Vertac | AR | | 88 | 5 | Fort Wayne Reduction | IN | 90 | 6 | Texarkana Wood Preserving | TX | | 88 | 5 | Forest Waste Products | MI | 90 | 7 | Missouri Electric Works | MO | | 88 | 5 | Pristine | ОН | | | | | ^{*} Residuals to be treated with soldification/stabilization. # REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR #### On-Site Incineration (continued) #### Off-Site Incineration (continued) | | | | | | | | " | | |----|--------|--------------------------------------|---------|----|-----|-------|------------------------------------|-------| | FY | REGION | SITE NAME | STATE | FY | r R | EGION | SITE NAME | STATE | | 90 | 7 | Hastings Groundwater | NE | 85 | 5 | 2 | Swope Oil & Chemical | NJ | | | | Contamination (East Industrial Park) | | 85 | 5 | 5 | Byron/Johnson Salvage
Yard | IL | | 90 | 10 | FMC Yakima Pit | WA | 85 | 5 | 6 | Triangle Chemical | TX | | | | | | 85 | 5 | 8 | Woodbury Chemical | CO | | | | | | 86 | 5 | 3 | Drake Chemical/Phase II | PA | | 91 | 3 | Whitmoyer Labs, Inc. OU3 | PA | 86 | 5 | 3 | Westline | PA | | 91 | 3 | Eastern Diversified Metals | PA | 86 | 5 | 5 | Metamora Landfill | MI | | 91 | 4 | Ciba Geigy Corp. | AL | 86 | 5 | 5 | Spiegelberg Landfill | MI | | 91 | 5 | Allied Chem & Ironton Coke | OH | 86 | 5 | 7 | Ellisville Area/Bliss | МО | | 92 | 4 | Alabama Army Ammunition Plant | AL | 87 | 7 | 2 | Williams Property | NJ | | | • | (Operable Unit 1) | | 87 | | 4 | Sodyeco | NC | | 92 | 5 | Savanna Army Depot | ΙL | 87 | | 6 | Sand Springs Petrochemical | OK | | 92 | 6 | Gulf Coast Vacuum Services | LA | 1 | | Ŭ | Complex | OK | | | | (Operable Unit 1) | | | | | | | | | | | | 88 | | 1 | Cannon Engineering/Plymouth | MA | | 93 | 3 | Seagertown Industrial | PA | 88 | | 2 | Ewan Property | NJ | | 93 | 3 | Mathis Brothers Landfill | GA | 88 | | 2 | Reich Farms | NJ | | | | (South Marble Top Road) | | 88 | | 2 | Brewster Well Field | NY | | 93 | 5 | MacGillis&Gibbs Bell Lumber | MN | 88 | | 3 | Wildcat Landfill | DE | | | | & Pole | | 88 | | 3 | Berks Sand Pit | PA | | 93 | 6 | American Cresote Works | LA | 88 | | 3 | Douglassville Disposal | PA | | | | (Winnfield Plant) | | 88 | | 3 | Fike Chemical | wv | | 93 | 6 | Vertac | AR | 88 | 3 | 5 | Belvidere Municipal
Landfill #1 | IL | | | | Off Site Incineration | | 88 | 3 | 6 | S. Calvacade St. | TX | | EV | DECION | , 1 - 1 - 1 | OT A TE | 88 | 3 | 7 | Minker/Stout/Romaine Creek | МО | | FY | REGION | SITE NAME | STATE | 88 | 3 | 7 | (R&S)
Syntex | МО | | 84 | 5 | Berlin & Farro Liquid Incineration | MI | | | | | | | 84 | 5 | Laskin/Poplar Oil | ОН | 89 |) | 1 | W.R. Grace (Acton Plant) | MA | | 84 | 10 | Western Processing Phase I | WA | 89 |) | 1 | O'Connor | ME | | | | S | | 89 | | 1 | Pinette's Salvage Yard | ME | ^{*} Residuals to be treated with soldification/stabilization. #### Off-Site Incineration (continued) #### Off-Site Incineration (continued) | | | | | | - | | | |----|-------------|-----------------------------------|-------|----|--------|---------------------------------------|-------| | FY | REGION | SITE NAME | STATE | FY | REGION | SITE NAME | STATE | | 89 | 2 | Claremont Polychemical | NY | 91 | 2 | Circuitron | NY | | 89 | 3 | M.W. Manufacturing | PA | 91 | 2 | Mattiace Petrochemical | NY | | 89 | 3 | Whitmoyer Laboratories | PA | 91 | 3 | Brodhead Creek | PA | | 89 | 4 | Newsom Brothers Old Reichold | MS | 91 | 3 | Eastern Diversified Metals | PA | | 89 | 5 | Cross Brothers Pail | 耴 | 91 | 3 | Dixie Cavern County Landfill | VA | | 89 | 5 | Outboard Marine/Waukegan Harbor | : IL | 91 | 4 | Aberdeen Pesticide Dumps | | | 89 | 5 | Wedzeb | IN | | | (Amendment) | NC | | 89 | 5 | Cliff/Dow Dump | MI | 91 | 4 | Wrigley Charcoal | TN | | 89 | 5 | Alsco Anaconda | OH | 91 | 5 | Acme Solvent Reclaiming Inc. | IL | | 89 | 6 | United Creosoting | TX | 91 | 5 | Main Street Wellfield | IN | | 89 | 8 | Woodbury Chemical | CO | 91 | 5 | Thermo Chem | MI | | | | | | 91 | 5 | Carter Industries | MI | | | | | | 91 | 5 | Summit National Liquid Disposal | | | 90 | 1 | Beacon Heights Landfill | CT | | | Service (Amendment) | ОН | | 90 | 1 | Kearsarge Metallurgical | NH | 91 | 6 | Petrochemical (Turtle-Bayou) | TX | | 90 | 2 | FAA Technical Center | NJ | 91 | 7 | Peoples Natural Gas | IA | | 90 | 2 | Hooker Chemical-Ruco Polymer | NJ | 91 | 7 | Ellisville Area Site | MO | | 90 | 2 | Sayreville landfill | NJ | 91 | 7 | Ellisville Area (Amendment) | MO | | 90 | 2 | Mattiace Petrochemicals | NY | 91 | 7 | Kem-Pest Laboratories | MO | | 90 | 2 | Sealand Restoration | NY | 91 | 8 | Broderick Wood Products | CO | | 90 | 3 | Greenwood Chemical* | VA | 91 | 8 | Hill AFB | UT | | 90 | 6 | Arkwood | AR | 91 | 9 | Advanced Micro Devices Inc. | CA | | 90 | 6 | Jacksonville Municipal Landfill | AR | 91 | 10 | Commencement Bay - Nearshore | | | 90 | 6 | Rogers Road Municipal Landfill | AR | | | Tideflats | WA | | 90 | 6 | Hardage/Criner (Amendment) | OK | 91 | 10 | Northwest Transformer - Mission | WA | | 90 | 7 | Fairfield Coal Gasification Plant | IA | | | Pole | | | 90 | 7 | Shenandoah Stables | MO | | | | | | 90 | 8 | Martin Marietta (Denver Aerospace |) CO | 92 | 2 | Ellis Property | NJ | | 90 | 8 | Sand Creek Industrial | CO | 92 | 3 | Fike Chemical | wv | | 90 | 8 | Ogden Defense Depot | UT | 92 | 5 | American Chemical Services | IN | | | | | | 92 | 8 | Ogden Defense Depot (Operable Unit 3) | UT | | 91 | 1 | Union Chemical | ME | 92 | 9 | Westinghouse Electric (Sunnyvale | CA | | 91 | 2 | Curcio Scrap Metal | NJ | | | Plant) | | | 91 | 2 | Swope Oil | NJ | 92 | 10 | Pacific Hide & Fur Recycling | ID | | 91 | 2 | Waldick Aerospace Devices, Inc. | NJ | | | (Amendment) | | ^{*} Residuals to be treated with soldification/stabilization. #### Off-Site Incineration (continued) #### Off-Site Incineration (continued) | FY | REGION | SITE NAME | STATE | | FY | REGION | SITE NAME | STATE | |----------|--------|--|---------|---|----|--------|-----------|-------| | 92 | 10 | U.S. DOE Idaho National
Engineering Lab (Operable Unit 23 | ID
) | | | | | | | 93 | 1 | Davisville Naval Construction Battalion Center | RI | | | | | | | 93 | 1 | Pinettes Salvage Yard | ME | | | | | | | 93 | 3 | Hunterstown Road | PA | | | | | | | 93 | 3 | Pentokil Virginia Wood Preserving | VA | ļ | | | | | | 93 | 4 | Koppers (Morrisville Plant) | NC | | | | | | | 93 | 6 | Vertac | AR |] | | | | | | 93 | 8 | Montana Pole and Treating | MT | | | | | | | 93 | 8 | Rocky Mountain Arsenal (OU29) | CO | | | | | | | 93 | 8 | Utah Power and Light/American | UT | | | | | | | 93 | 10 | Barrel
Hanford 1100-Area (DOE) | WA | | | | | | | 93
93 | 10 | Harbor Island-Lead | WA | 1 | | | • | | | 73 | 10 | Haroor Island-Lead | WA | | | | | | ^{*} Residuals to be treated with soldification/stabilization. ### Solidification/Stabilization ### Solidification/Stabilization (continued) | FY | REGION | SITE NAME | STATE | FY | REGION | SITE NAME | STA | |----|--------|---------------------------------|-------|----|--------|------------------------------|-----| | 82 | 3 | Bruin Lagoon | PA | 88 | 2 | Love Canal | ľ | | | | • | | 88 | 2 | Marathon Battery | 1 | | | | | | 88 | 2 | York Oil |] | | 84 | 6 | Bioecology Systems | TX | 88 | 3 | Alladin Plating |] | | | | | | 88 | 3 | Fike Chemical | | | | | | | 88 | 4 | Brown Wood Preserving |] | | 85 | 4 | General Refining - ? | GA | 88 | 4 | Flowood |] | | 85 | 4 | Davie Landfill | FL | 88 | 4 | Chemtronics |] | | 85 | 10 | Western Processing/Phase II | WA | 88 | 5 | Velsicol Chemical |] | | | | | | 88 | 5 | Mid-State Disposal Landfill | • | | | | | | 88 | 6 | Industrial Waste Control | | | 86 | 2 | Marathon Battery | NY | 88 | 6 | Bailey Waste Disposal | • | | 86 | 3 | Bruin Lagoon | PA | 88 | 6 | Brio Refining | • | | 86 | 4 | Pepper's Steel & Alloy | FL | 88 | 6 | French Limited | | | 86 | 4 | Sapp Battery Salvage | FL | 88 | 7 | Midwest Manufacturing/ |] | | 86 | 5 | Burrows Sanitation | MI | | | North Farm | | | 86 | 5 | Forest Waste Products | MI | 88 | 9 | Selma Pressure Treating | | | | | | | 88 | 10 | Pacific Hide & Fur Recycling |] | | | | • | _ | 88 | 10 | Gould | (| | 87 | 1 | Davis Liquid Waste | RI | 88 | 10 | Commencement Bay/NTF | 7 | | 87 | 2 | Chemical Control | NJ | 88 | 10 | Frontier Hard Chrome | 7 | | 87 | 2 | Myers Property Ժ 🚶 | NJ | | | | | | 87 | 2 |
Waldick Aerospace | NJ | | | | | | 87 | 4 | Gold Coast | FL | 89 | 1 | Sullivan's Ledge | 1 | | 87 | 4 | Geiger/C&M Oil | SC | 89 | 1 | W.R. Grace (Acton Plant) | 1 | | 87 | 4 | Independent Nail | SC | 89 | 1 | O'Connor | 1 | | 87 | 4 | Palmetto Wood Preserving | SC | 89 | 2 | DeRewal Chemical | 1 | | 87 | 5 | Liquid Disposal | MI | 89 | 2 | Marathon Battery | ì | | 87 | 5 | Northern Engraving | WI | 89 | 3 | Craig Farm |] | | 87 | 6 | Gurley Pit | AR | 89 | 3 | Douglassville Disposal |] | | 87 | 6 | Mid-South Wood | AR | 89 | 3 | Hebelka Auto Salvage Yard | 1 | | 87 | 6 | Cleve Reber | LA | 89 | 3 | Ordnance Works Disposal | 1 | | 87 | 6 | Sand Spring Petrochemical | OK | 89 | 4 | Kassouf-Kimerling Battery | 1 | | | | Complex | | 89 | 4 | Smith Farm Brooks | I | | | | | | 89 | 4 | Cape Fear Wood Preserving | .] | | | | | | 89 | 4 | Celanese | 1 | | 88 | 1 | Charles George Land Reclamation | MA | 89 | 4 | Amnicola Dump | 7 | #### Solidification/Stabilization (continued) ### Solidification/Stabilization (continued) | FY | REGION | SITE NAME | STATE | | FY | REGION | SITE NAME | STATE | |----|--------|------------------------------------|-------|-----|----|--------|---------------------------------------|-------| | 89 | 5 | MIDCO I | IN | | 90 | 8 | Rocky Mountain Arsenal (OU 17) | со | | 89 | 5 | MIDCO II | IN | - } | 90 | 9 | J.H. Baxter | CA | | 89 | 5 | Auto Ion Chemicals | ΜI | | 90 | 10 | Teledyne Wah Chang Albany (TW | | | 89 | 6 | Pesses Chemical | TX | | | | , , , , , , , , , , , , , , , , , , , | , | | 89 | 6 | Sheridan Disposal Services | TX | ļ | | | | | | 89 | 7 | Vogel Paint & Wax | IA | | 91 | 1 | Silresin Chemical | MA | | 89 | 9 | Koppers (Oroville Plant) | CA | | 91 | 1 | Sullivan's Ledge | MA | | 89 | 9 | Purity Oil Sales | CA | | 91 | 1 | Union Chemical | MA | | | - | | | 1 | 91 | 2 | Asbestos Dump | NJ | | | | | | 1 | 91 | 2 | Nascolite Corp. | NJ | | 90 | 1 | New Bedford | MA | l | 91 | 2 | NL Industries | NJ | | 90 | 2 | Roebling Steel | NJ | | 91 | 2 | Roebling Steel | NJ | | 90 | 3 | M.W. Manufacturing | PA | | 91 | 2 | Waldick Aerospace Services Inc. | NJ | | 90 | 3 | C&R Battery | VA | | 91 | 2 | White Chemical Corp. | NJ | | 90 | 3 | Greenwood Chemical | VA | ļ | 91 | 3 | Halby Chemical | DE | | 90 | 4 | 62nd Street Dump | FL | | 91 | 3 | Mid-Atlantic Wood Preservers | MD | | 90 | 4 | Cabot/Koppers | FL | | 91 | 3 | Eastern Diversified Metals | PA | | 90 | 4 | Coleman-Evans Wood Preserving | FL | ` | 91 | 3 | Hebelka Auto Salvage Yard | PA | | | | (Amendment) | | i | 91 | 3 | Whitmoyer Lab (OU3) | PA | | 90 | 4 | Kassourf-Kimerling Battery | FL | | 91 | 3 | Whitmoyer Lab (OU2) | PA | | | | Disposal | | | 91 | 3 | U.S.A. Letterkenny SE | PA | | 90 | 4 | Schuylkill Metal | FL | • | 91 | 3 | First Piedmont Quarry 719 | VA | | 90 | 4 | Yellow Wate Road | FL | | 91 | 3 | Saunders Supply | VA | | 90 | 4 | Zellwood Groundwater | FL | | 91 | 4 | Interstate Lead Co. | AL | | | | Contamination (Amendment) | | | 91 | 4 | USAF Robins Air Force Base | GA | | 90 | 5 | Sangamo/Crab Orchard | IL | | 91 | 4 | Maxey Flats Nuclear Disposal | KY | | | - | National Wildlife Refuge | | 1 | 91 | 4 | Golden Strip Septic Tank | SC | | 90 | 5 | Wayne Waste Oil | IN | | 91 | 4 | Aberdeen Pesticide Dump | NC | | 90 | 5 | Springfield Township Dump | MI | | | | (Amendment) | | | 90 | 5 | Oconomowoc Electroplating | WI | | 91 | 4 | Carolina Transformer | NC | | 90 | 6 | Jacksonville Municipal Landfill | AR | | 91 | 4 | Arlington Blending and | TN | | 90 | 6 | Rogers Road Municipal Landfill | AR | 1 | - | | Packaging Co. | | | 90 | 7 | Shenandoah Stables | MO | | 91 | 4 | Oak Ridge OU3 | TN | | 90 | 7 | Hastings Groundwater Contamination | | | 91 | 4 | Wrigley Charcoal | TN | | 70 | • | (East Industrial Park) | · | ł | 91 | 5 | Acme Solvents | IL | | 90 | 8 | Martin Marietta (Denver | CO | | 91 | 5 | Carter Industries | MI | | 70 | O | Aerospace) | | | 91 | 6 | Cimarron Mining Corp. | NM | # Solidification/Stabilization (continued) # Solidification/Stabilization (continued) | FY | REGION | | | | | | | |----------|--------|--|---------|----------|--------|---------------------------------------|--------| | | REGION | SITE NAME | STATE | FY | REGION | SITE NAME | STATE | | 91 | 7 | IE Dupont de Nemours & Co., Inc. | IA | 92 | 6 | 0.100 | | | 91 | 7 | Mid-America Tanning | IA | 92 | 0 | Gulf Coast Vacuum Services | LA | | 91 | 7 | Shaw Avenue Dump | IA | 92 | | (Operable Unit 1) | | | 91 | 8 | Anaconda Co. Smelter | MT | 92 | 6
8 | Oklahoma Refining | OK | | 91 | 9 | FMC (Fresno Plant) | CA | 92 | | Broderick Wood Products | CO | | 91 | 9 | Valley Wood Preserving | CA | | 8 | Denver Radium (Operable Unit 8) | CO | | | | , | O/I | 92
92 | 8 | Portland Cement (Kiln Dust #2 & # | /3) UT | | 92 | 1 | PSC Resources | | | 8 | Rocky Flats (USDOE) (Operable Unit 4) | СО | | 92 | 2 | · · · · · · · · · · · · · · · · | MA | 92 | 8 | Silver Bow CreekButte Area | MT | | 92 | 2 | Cosden Chemical Coatings | NJ | 92 | 9 | Rhone-Poulenc/Zoecon | CA | | 92 | 2 | Facet Enterprises | NY | 92 | 10 | Bunker Hill Mining and | ID | | 92 | 3 | Preferred Plating Abex | NY | Ì | | Metallurgical Complex | | | 92 | 3 | | VA
- | 92 | 10 | Pacific Hide & Fur Recycling | ID | | 92 | 3 | C & D Recycling | PA | 1 | | (Amendment) | | | 92 | 3 | Fike Chemical
Paoli Rail Yard | wv | 92 | 10 | U.S. DOE Idaho National | ID | | 92 | 3 | | PA | | | Engineering Lab (Operable Unit 22) | | | 92 | 3 | Rhinehart Tire Fire Dump | VA
- | <u> </u> | | | , | | 92 | 4 | Tonolli | PA | | | | | | 92 | 4 | Agrico Chemical | FL | 93 | 1 | Salem Acres | MA | | 92 | 4 | Ciba-Geigy (McIntosh Plant)
Florida Steel | AL | 93 | 2 | American Cyanamid | NJ | | 92 | 4 | | FL | 93 | 2 | FMC-Dublin Road | NY | | 92 | 4 | JFD Electronics/Channel Masters | NC | 93 | 2 | Hunterstown Road | PA | | 92 | 4 | Marine Corps Logistics Base | GA | 93 | 3 | Rentokil Virginia Wood Preserving | VA | | 72 | 4 | Savannah River (USDOE) | SC | 93 | 4 | Anodyne | FL | | 92 | 4 | (Operable Unit 1) | | 93 | 4 | Bypass 601 Groundwater | NC | | 72 | 7 | Whitehouse Waste Oil Pits | FL | 1 | | Contamination | | | 92 | 5 | (Amendment) Electrovoice | | 93 | 4 | Bypass 601 Groundwater | NC | | 92 | 5 | | MI | | | Contamination (Amendment) | | | 92 | 5 | H. Brown Company | MI | 93 | 4 | Cedartown Industries | GA | | 92 | 5 | Peerless Plating | MI | 93 | 4 | Geiger (C&M Oil) (Amendment) | SC | | 92 | 5 | Savanna Army Depot | IL | 93 | 4 | Hercules 009 Landfill | GA | | 92 | 5 | Spickler Landfill | WI | 93 | 4 | Kalama Specialty | SC | | 92 | 6 | Tar Lake | MI | 93 | 4 | Peak Oil/Bay Drum (Operable Unit | | | 92 | 6 | Cal West Metals | NM | 93 | 4 | Peak Oil/Bay Drum (Operable Unit : | 3)FL | | 92
92 | 6 | Double Eagle Refinery | OK | 93 | 4 | Reeves Southeastern Galvanizing | FL | | 76 | U | Fourth Street Abandoned Refinery | OK | | | (Operable Unit 1) | | **STATE** # TABLE A-2 (continued) REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR FY REGION #### Solidification/Stabilization (continued) #### Solidification/Stabilization (continued) SITE NAME | FY | REGION | SITE NAME | STATE | |----|--------|--|---------| | 93 | 5 | Reilly Tar & Chemical (Indianapolis Plant) | FL | | 93 | 6 | Pab Oil & Chemical Services | LA | | 93 | 6 | Weldon Spring Quarry/Plant/Pits (USDOE) | МО | | 93 | 8 | Rocky Mountain Arsenal (Operable Unit 28) | CO | | 93 | 8 | Utah Power & Light/American Barr | el UT | | 93 | 8 | McColl | CA | | 93 | 9 | Sacramento Army Depot | CA | | 93 | 10 | American Crossarm & Conduit | WA | | 93 | 10 | Umatilla Army Depot (Operable Un | it 1)OR | **Other** | FY | REGION | SITE NAME | STATE | rechnology | |----|--------|-------------------------|-------|------------------| | 85 | 6 | Triangle Chemical | TX | Soil Aeration | | 87 | 3 | West Virginia Ordnance | wv | In situ Flamming | | 88 | 3 | Bendix Flight System | PA | Soil Aeration | | 88 | 7 | Arkansas City Dump | KS | Chemical | | 89 | 9 | Intel, Mountain View | CA | Soil Aeration | | 89 | 9 | Raytheon, Mountain View | CA | Soil Aeration | | 90 | 4 | Howe Valley Landfill | KY | Soil Aeration | | 92 | 3 | Fike Chemical | wv | Neutralization | | 92 | 6 | Double Eagle Refinery | OK | Neutralization | | 92 | 6 | Fourth Street Abandoned | OK | Neutralization | | | _ | Refinery | | | | 92 | 6 | Oklahoma Refining | OK | Neutralization | | 93 | 4 | Kalama Specialty | SC | Soil Aeration | THIS PAGE INTENTIONALLY LEFT BLANK # Appendix B Innovative Technologies at Superfund Removal Actions THIS PAGE INTENTIONALLY LEFT BLANK #### **TABLE B-1** ### REMOVAL ACTIONS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY Table B-1 is the principal part of this chapter. It contains the most detailed, site-specific information for removal sites for which innovative treatment technology has been selected. The columns of Table B-1 present the following information: ### Region This column indicates the EPA Region in which the site is located. #### Site Name, State, Action Memo Date This column identifies the site and the operable unit for which an innovative treatment technology was selected. An action memorandum documents the selection of remedy in the removal program. The date shown in this column is the date on which an action memorandum was signed by an EPA official. An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site. ### **Specific Technology** The second column describes the specific technology selected within a general category of innovative treatment. For example, within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen. ### Site Description This column provides information on the industrial source of the contamination at the site and allows analysis of the selection
of innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently selected innovative technology for wood preserving sites. #### Media (quantity) This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made to include the maximum depth of the treatment to provide the reader with another parameter significant to the application. ### **TABLE B-1 (Continued)** ### **Key Contaminants Treated** The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. There may be other contaminants as well that will be treated. Other contaminants that may be present, but that are not being addressed by the listed technology, are <u>not</u> included. #### Status This column indicates the status of the application of the innovative treatment technology. Predesign indicates that the ROD has been signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is in design, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is being installed, the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is operational if it is completely installed and it is now being operated as a treatment system; the remedy is completed if the goals of the ROD or decision document for that treatment technology have been met and treatment has ceased. One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the projects. Whenever possible, the season and year that the current phase will end is given. This information is identified as the "completion planned" date. ### Lead Agency, Treatment Contractor The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties will conduct the remedy with EPA/State oversight (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction through its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may act for EPA to manage the design or construction. Whichever agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead agency has selected a contractor. #### Contacts/Phone This final column provides the names and telephone numbers of useful contacts for the site or technology. The first name listed is usually the EPA on-scene coordinator (OSC) responsible for the site. If a remedy is being managed by the state, the name and phone number of the state RPM also is provided. Information on any other useful contacts is provided. # Bioremediation (Ex situ) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--------------------|-----------------------|--|---|---|---| | 2 | GCL Tie and Treating,
NY
Emergency Response | Composting | Wood preserving | Soil (4,800 cy) | PAHs (Creosote) | In design;
Pilot study
completed in
Jan 1994 | Federal
lead/Fund
Financed;
ERT/REAC | Joe Cosentino
908-906-6983
Carlos Ramos
212-264-5636 | | 4 | Southeastern Wood
Preserving, MS
Emergency Response
(Action Memo signed
09/30/90)
See also Soil Washing | Sturry phase
(preceded by
soil washing) | Wood preserving | Soil (12,000 cy) | PAHs (Creosote) | Completed;
September 1994 | Federal
lead/Fund
Financed; OHM
Remediation
Services Corp | Don Rigger
404-347-3931 | | 5 | Indiana Wood Treating,
IN
Emergency Response
(Action Memo signed
10/11/92) | Composting | Wood preserving | Soil (18,000 cy) | PAHs (Creosote) | Operational;
Completion
planned Fall
1994; After 6
months 8 of 9
compost piles
below
treatment
target levels. | Federal
lead/Fund
Financed; IT
Corporation,
CMC, Inc
subcontractor | Steve Faryan
312-353-9351 | | 6 | MacMillan Ring Free
Oil Company*, AR
Emergency Response
(Action Memo signed
11/09/92) | Solid phase | Petroleum refining | Sediments (38,000 cy) | VOCs (BTEX), PAHS
(DAF Float) | Being
installed;
project
completion
date planned
Fall 1995 | Federal
lead/fund
Financed;
Reidel
Environmental
Services | Charles Fisher
214-655-2224 | | 7 | Scott Lumber, MO
Emergency Response
(Action Memo signed
07/10/87) | Land treatment | Wood preserving | Soil (16,000 cy) | SVOCs (Phenois,
PAHs
Benzo(a)pyrene) | Completed;
Operational
from 1987 to
Fall 1991 | Federal
lead/Fund
Financed;
Remediation
Technologies | Bruce Morrison
913-551-5014 | # **Bioremediation (Ex situ) (continued)** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|------------------------|--------------------------------|------------------|-----------------------------------|---|--|----------------------------| | 9 | Poly-Carb, NV
Emergency Response
(Action Memo signed
05/14/87)
See also Soil Washing | Land treatment | Commercial waste
management | Soil (1,500 cy) | SVOCs (Phenols),
PAHs (Cresol) | Completed;
Operational
from 7/87 to
8/88 | Federal
lead/Fund
Financed;
Reidel
Environmental
Services | Bob Mandel
415-744-2290 | # Bioremediation (In situ) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|-------------------------------------|-------------------------------------|---|--|--|--------------------------------| | 4 | CSX McCormick Derailment Site, SC Emergency Response See also Soil Vapor Extraction | In situ
groundwater | Derailment (30,000
gallon spill) | Groundwater down
to 40 feet deep | VOCs (BETX) | Operational | PRP
lead/Federal
oversight;
Kemron | Steve Spurlin
404-347-3931 | | 6 | Baldwin Waste Oil, TX
Emergency Response
(Action Memo signed
07/01/92) | In situ soil | Waste oil recycler | Soil (550 cy)
down to 1 foot | VOCs (BTEX), PAHS
(TPH) | Completed;
September 1994 | Federal
lead/Fund
Financed;
Ecology &
Environment,
RSKERL (EPA),
Reidel
Environmental | Gary Guerra
214-665-6608 | | 9 | Gila River Indian
Reservation, AZ
Emergency Response
(Action Memo signed
07/31/84)
See also Chemical
Treatment | In situ soil
Preceded by
chemical
treatment | Drum storage/
disposal | Soil (3,200 cy) | Biocides
(Toxaphene, Ethyl
and Methyl
Parathion) | Completed;
Operational
from 6/85 to
10/85 | PRP
lead/Federal
oversight | Richard Martin
414-744-2288 | | 9 | Roseville Drums, CA
Emergency Response
(Action Memo signed
03/03/88) | In situ soil | Midnight dump on
dirt road | Soil (14 cy) | SVOCs
(Dichlorobenzene,
Phenols) | Completed;
Fall 1988;
Operational
from 2/88 to
11/88 | Federal
Lead/Fund
Financed | Brad Shipley
415-744-2287 | # **Chemical Treatment** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|----------------------------------|--|--|--------------------------------|--|---|--| | 2 | Vineland Chemical, NJ
Emergency Response
(Action Memo signed
09/28/92) | Chemical
Treatment | Pesticide
manufacturing/use/
storage | Solids (100 lb) | Metals (Mercury) | Completed; December 1992; This portion of the site is completed.
Remedial action for the whole site will be done by April 1994 | Federal
lead/Fund
Financed; Ensco | Don Graham
908-321-4345
Steve Brawley
(Ensco)
706-278-1195 | | 2 | Zschiegner Refining
Company, NJ
Emergency Response | Chemical
Treatment | Precious metal
recovery | Solids (100 lb) | Metals (Mercury) | Completed; Summer 1993; Operational from 2/93 to 6/93. Removal action completed. Other part going on. | Federal
lead/fund
Financed; Ensco | Dilshad Perera
908-321-4356
Steve Brawley
(Ensco)
706-278-1195 | | 3 | Avtex Fibers, VA
Emergency Response
(Action Memo signed
11/14/89) | Chemical
Treatment | Rayon
manufacturing
facility/
wastewater
treatment | Sludge (39,000
gl) | Organics (Carbon
disulfide) | Completed;
August 1991 | Federal
lead/Fund
Financed; OH
Materials | Vincent Zenone
215-597-3038
Bonnie Gross
215-597-0491 | | 5 | PBM Enterprises (Van
Dusen Airport
Service), MI
Emergency Response
(Action Memo signed
04/10/88) | Oxidation Sodium
Hypochlorite | Silver recovery
facility | Solids Cyanide
tainted X-ray
chips | Organic cyanides | Completed;
Operational
from 5/85 to
10/85 | Federal
lead/Fund
Financed;
American
Environmental
Service, Inc. | Ross Powers
313-692-7661 | # **Chemical Treatment (continued)** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|---|------------------|---|--|--|--------------------------------| | 8 | Mouat Industries*, NT
Emergency Response
(Action Memo signed
09/20/91) | Reduction using
sulfuric acid
and ferrous
sulfate | Metal ore mining and smelting | Soil (47,000 cy) | Metals (Chromium
IV) | Operational;
Completion
planned Spring
1994;
Operation
started June
1993 | PRP
lead/Federal
oversight;
Baker
Environmental | Ron Bertran
406-449-5720 | | 9 | Gila River Indian Reservation, AZ Emergency Response (Action Memo signed 07/31/84) See also Bioremediation (In Situ) | Reduction using
sodium hydroxide | Drum storage/
disposal | Soil (3,200 cy) | Biocides
(Toxaphene, Ethyl
and Methyl
Parathion) | Completed;
Operational
from 4/85 to
10/85 | Federal
lead/Fund
Financed | Richard Martin
414-744-2288 | | 9 | Stanford Pesticide #1,
AZ
Emergency Response
(Action Memo signed
(04/20/87) | In situ | Pesticide
manufacturing/use/
storage, Farm
equipment storage | Soil (200 cy) | Biocides (Methyl
Parathion) | Completed;
Operational
from 7/87 to
9/87 | Federal
lead/Fund
Financed;
Crosby and
Overton | Dan Shane
415-744-2286 | # Dechlorination | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|------------------------|--|------------------|---|---|---|--| | 2 | Signo Trading/Nt.
Vernon, NY
Emergency Response
(Action Memo signed
12/19/86) | Dechlorination | Waste management
facility warehouse | Sludge (15 gl) | Dioxins (2,3,7,8
TCDD-laden
herbicides) | Completed;
Completed in
1987 | Federal
lead/fund
Financed;
Galson Research
Corp
(subcontractor
to OKM) | Charles
Fitzsimmons
908-321-6608 | | 7 | Crown Plating, MO
Emergency Response
(Action Memo signed
08/29/89) | Dechlorination | Electroplating | Liquid (55 gl) | Biocides (silvex;
2,4,5 TP) | Completed;
Operational
from 10/89 to
12/89 | Federal
lead/Fund
Financed | Mark Roberts
913-236-3881 | June 1994 # In situ Vitrification | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--------------------------|-----------------------------------|------------------|---|--|--|----------------------------| | 5 | Parsons Chemical (ETM
Enterprise), MI
Emergency Response
(Action Memo signed
09/21/90) | In situ
Vitrification | Agricultural
chemical facility | Soil (3,000 cy) | Biocides,
Dioxins, Metals
(Mercury) | Completed; First full-scale application of in situ vitrification at a hazardous waste site | Federal
lead/Fund
Financed;
Geosafe Corp. | Len Zintak
312-886-4246 | # **Soil Vapor Extraction** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--|--|---|---|---|---| | 4 | Basket Creek Surface
Impoundment*, GA
Emergency Response
(Action Memo signed
04/11/91) | Soil vapor
extraction ex
situ, used on a
soil pile | Surface
impoundment used
for disposal of
solvents | Soil (2,000 cy) | VOCs (TCE, PCE,
MEK, MIBK,
Toluene, Xylene,
Benzene) | Completed | Federal
lead/Fund
Financed; OHM | Don Rigger
404-347-3931
Extn-6140 | | 4 | CSX McCormick Derailment Site, SC Emergency Response See also Bioremediation (In Situ) | Soil vapor
extraction with
air flushing | Derailment (30,000
gallon spill) | Soil (200,000 cy)
down to 8 feet
deep | VOCs (BETX) | Completed;
Operation
completed
Winter 1993 | PRP
lead/Federal
oversight;
Midwest
Research
Institute | Steve Spurlin
404-347-3931 | | 4 | Hinson Chemical, SC
Emergency Response
(Action Memo signed
11/28/88) | Soil vapor
extraction with
air flushing | Waste reclaiming
facility | Soil (60,000 cy)
to a depth of 50
feet | VOCs | Completed;
March 1992;
Operational
from 12/88 to
3/92 | Federal
lead/fund
financed; OH
Materials | Fred Stroud
404-347-3136 | | 8 | Mystery Bridge Road/Highway 20, OU 2*, WY Emergency Response (Action Memo signed See also Other Technologies | Soil vapor
Extraction | Natural gas
compressor station | Soil (160,000 cy)
approximately 5
acres down to 20
feet | VOCs (Benzene) | Operational | PRP
lead/Federal
oversight;
Adrian Brown
Consultants | Lisa Reed
303-293-1515 | # Soil Washing | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|--------------------------------|--|-----------------------------------|--|--|----------------------------| | 4 | Southeastern Wood
Preserving, MS
Emergency Response
(Action Memo signed
09/30/90)
See also
Bioremediation (Ex
Situ) | Soil washing
(sand removal,
followed by
bioremediation
of fines | ₩ood preserving | Sludge (quantity
unknown), Solids
(1,000 cy) | SVOCs, PAHs
(Creosote) | Operational;
Completion
planned Spring
1994 | Federal
lead/fund
Financed; OHM
Remediation
Services Corp. | Don Rigger
404-347-3931 | | 9 | Poly-Carb, NV Emergency Response (Action Memo signed 05/14/87) See also Bioremediation (Ex Situ) | Soil Washing | Commercial waste
management | Soil (1,500 cy) | SVOCs (Phenols),
PAHs (Cresol) | Completed;
Operational
7/87 to 8/88 | Federal
lead/Fund
Financed;
Reidel
Environmental
Services | Bob Mandel
415-744-2290 | # **Thermal Desorption** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------
--|------------------------|--|------------------|--|---|--|-------------------------------| | 4 | FCX-Washington Site,
NC
Emergency Response
(Action Memo signed
12/04/91) | Thermal
Desorption | Pesticide
manufacturing/use/
storage | Soil (15,000 cy) | Biocides
(Chlordane,
Methoxyclor, DDT,
DDE) | Being
installed | Federal
lead/Fund
Financed | Paul Peronard
404-347-6121 | | 10 | Drexler - RAMCOR*, WA
Emergency Response
(Action Memo signed
09/30/91) | Thermal
Desorption | Waste oil recycler | Soil (3,000 cy) | VOCs (BTEX), PAHs
(Petroleum
hydrocarbons) | Completed;
Operational
from 7/92 to
8/92 | Federal
lead/Fund
Financed; Four
Seasons | Chris Field
206-553-1674 | June 1994 # Other | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|------------------------|-----------------------------------|-------------------|-----------------------------|-------------|--|---------------------------| | 8 | Mystery Bridge
Road/Highway 20, OU
2*, WY
Emergency Response
See also Soil Vapor
Extraction | Air sparging | Natural gas
compressor station | Soil (160,000 cy) | VOCs (Benzene) | Operational | PRP
lead/Federal
oversight;
Adrian Brown
Consultants | Lisa Reed
303-293-1515 | THIS PAGE INTENTIONALLY LEFT BLANK Appendix C Innovative Technologies at Actions Under Other Federal Programs #### TABLE C-1 #### OTHER FEDERAL PROGRAMS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY Table C-1 is the principal part of this chapter. It contains the most detailed, site-specific information for removal sites for which an innovative treatment technology has been selected. The columns of Table C-1 present the following information: ### Region This column indicates the EPA Region in which the site is located. #### Site Name, State This column identifies the site and the operable unit for which an innovative treatment technology was selected. An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site. ### Specific Technology The second column describes the specific technology selected within a general category of innovative treatment. For example, within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen. #### **Site Description** This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently selected innovative technology for wood preserving sites. ### Media (quantity) This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made to include the maximum depth of the treatment to provide the reader with another important parameter regarding the application. #### **TABLE C-1 (Continued)** #### **Key Contaminants Treated** The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. There may be other contaminants as well that will be treated. Other contaminants that may be present, but that are not being addressed by the listed technology, are <u>not</u> included. #### **Status** This column gives the status of the application of the innovative treatment technology. Predesign indicates that the ROD has been signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is in design, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is being installed, the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is operational if it is complete and it is now being operated as a treatment system; the remedy is completed if the goals of the ROD or decision document for that treatment technology have been met and treatment has ceased. One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the projects. Whenever possible, the season and year that the current phase will end is given. This information is identified as the "completion planned" date. ### Lead Agency, Treatment Contractor The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties will conduct the remedy with EPA/State oversight (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction through its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may act for EPA to manage the design or construction. Whichever agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead agency has selected a contractor. #### Contacts/Phone This final column gives the names and telephone numbers of useful contacts for the site or technology. The first name listed is usually the project manager or point of contact responsible for the site. If a remedy is being managed by the state, the name and # Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 # Bioremediation (Ex situ) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|--|--|------------------|--|---|--|--| | 6 | Matagorda Island AF
Range, TX | Solid phase | Federal facility | Soil (500 cy) | VOCs (BTEX), PAHs
(TPH, Tar) | Completed;
Operational
from 10/92 to
3/93 | Army
(USACE)/DoD
Financed - IRP
Program; CCC,
Inc. | Jack Otis
409-766-3161
Domingo Galindo
(USACE)
512-884-3385 | | 8 | Former Glasgow AFB, MT | Land treatment | UST removal site | Soil (2,000 cy) | VOCs, PAHs
(Petroleum
hydrocarbons) | Being installed; Installation completion planned fall 1994; Design Completed. Expected construction completion date fall 1994 | ARMY
(USACE)/DoD
Financed FUDS
Program | Martin
Rasmussen
(USACE, Omaha)
402-221-3827
Steve Ott
(USACE, Omaha)
402-221-7670 | | 9 | Ft. Ord Marina,
Fritzche AAF Fire
Drill Area, CA | Land treatment | fire drill area | Soil (4,000 cy) | VOCs (TCE, MEK),
PAHs (Petroleum
hydrocarbons) | Completed;
Winter 1991 | Army
(USACE)/DoD
Financed - IRP
Program | Gail Youngblood
408-242-8017 | | 9 | Marine Corps., y
Mountain Warfare
Center, Bridgeport, CA | Bioremediation
(Ex Situ) Heap
pile bioreactor
with aeration
and irrigation | Federal facility | Soil (7,000 cy) | PAHs (Petroleum
hydrocarbons,
Diesel) | Completed;
1989;
Pilot-scale
project | State
Lead/Western
Division of
NFEC; ENSR | Bill Major
805-982-1808 | | 10 | Ft. Wainwright*, AK ^V | Land treatment
Biopile | Federal facility,
fuel pipeline,
aboveground
storage tank | Soil (4,500 cy) | PAHs (Diesel) | Operational | Army
(USACE)/DoD
Financed - IRP
Program;
Laidlaw | Diane Soderland
907-271-5083
David Williams
(USACE)
907-753-5657 | # Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 # Bioremediation (In situ) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|-----------------------------|---|---|-------------------------------------|--|---|--| | 4 | Savannah River DOE, M
Area Settling Basin,
SC
See also Soil Vapor
Extraction, Other
Technologies | In situ
groundwater | Leaking solvent
line | Groundwater | VOCs (TCE, PCE),
PAHs ((DNAPLs)) | Operational;
Operation
began in 1990 |
DOE Lead/DOE
funding;
Westinghouse
Savannah River
Company | Nate Ellis
(DOE)
803-952-4846
Brian Lowry
(WSRC)
803-725-5181 | | 6 | Kelly AFB, Site 1100*,
TX
See also Soil Vapor
Extraction | In situ soil
Bioventing | Federal facility
(hazardous waste
facility) | Soit (8,900 cy) | VOCs (JP-4) | Operational;
Completion
planned 1994;
full scale
since 1993;
completion in
2 years | Kelly AFB/Air
Force Funded;
SAIC | Steve Escude
210-925-1812 | | 8 | Ft. Carson*, CO
See also Soil Vapor
Extraction | In situ soil
Bioventing | UST remediation | Soil down to 80
feet | VOCs (gasoline) | Operational;
completion
date unknown | Army
(USAÇE)/DoD
Financed - IRP;
Woodward Clyde | John Cloonan
(USACE)
719-526-8004 | | 9 | Aua Fuel Farm, Aua
Village, American
Samoa, | Bioremediation
(In Situ) | Fuel farm | Soil (quantity
unknown) | PAHs (Diesel
fuel) | Operational;
Completion
expected for
Spring 1996 | Army
(USACE)/DoD
Financed - FUDS
Program | Helene Takemoto
(USACE, pac
div)
808-438-6931/
1776 | | 9 | Davis Monthan AFB, AZ
See also Soil Vapor/
Extraction | In situ soil | Federal facility
JP-4 Pump House | Soil (440 cy) 400
ft by 15 ft down
to 2 ft deep | PAHs (Petroleum
hydrocarbons) | Completed;
Operational
from 7/91 to
3/92 | USACE/Air Force | Mike
Steffansmeyer
(USACE, Omaha)
402-221-7163 | # Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 # Bioremediation (In situ) (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|----------------------------|--|--|--|--|--|---| | 9 | Davis Monthan AFB,
Site 35, AZ
See also Soil Vapor
Extraction | In situ soil
Bioventing | JP-4 pump house | Soil (63,000 cy) | VOCs (JP-4), PAHs | Being
installed;
Pilot test
Winter 1994 | USACE/ Air
Force Funded
(State
Oversite);
Engineering
Science | Mike
Steffanmeyer
(USACE, Omaha)
402-221-7163
Karen Odom
(USAF)
602-750-5595
Doug Dowrey
(ES)
303-831-8100 | | 9 | Seal Beach Navy/
Weapons Station IR
Site 14, CA
See also Soil Vapor
Extraction | Anaerobic | Federal facility
Naval weapons
station | Soil (1,700 cy)
100 yd diameter
down to 6 feet
deep | VOCs (BTEX), PAHs
(Petroleum
hydrocarbons) | Operational;
Operations
started in
1989 | Navy/DoD
Financed - IRP
Program; Naval
Facility
Engineering
Center
(Stanford
Univ.) | Laura Duchnak
(Navy RPM)
619-532-3152
Steve McDonald
(Navy)
310-594-7655 | | 11 | Naval Communication
Station, Scotland, | In situ soil | Diesel fuel
storage tanks and
piping | Soil apprx.8,608
square feet (800
sq meters) | SVOCs (No.2
Diesel) | Completed;
Fall 1985 | Naval Civil
Engineering
Lab/DoD
Federal;
Polybac | Deh Bin Chan
805-982-4191 | # Dechlorination | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|------------------------|------------------|-------------------------|-----------------------------|--|--|--------------------------------------| | 9 | U. S. Public Works
Center, Guam, GU | Dechlorination | Federal facility | Soil (5,500 cy)
tons | PCBs | Operational;
Completion
planned Summer
1995 | Navy; Guam EPA
Oversite; IT
Corp | D. B. Chan
(Navy)
805-982-4191 | # Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 #### **Soil Vapor Extraction** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|---|---|---|--|---|---| | 3 | Langley AFB, IRP Site 28, VA | Soil vapor
extraction with
air flushing | Federal facility | Soil 1.5 acres
down to 5feet
deep | VOCs (Gasoline) | Being
installed;
Installation
completion
planned Summer
1994 | USACE/Air Force
Funded | John Farhat
(USACE, Omaha)
402-221-7654
Dan Musel
(Langley AFB)
804-764-3987 | | 4 | Savannah River DOE, M
Area Settling Basin,
SC
See also
Bioremediation (In
Situ), Other
Technologies | Soil vapor
extraction with
air flushing
with groundwater
sparging | Leaking solvent
line | Soil (450,000
lb), Groundwater
down to 200 feet | VOCs (TCE, PCE) | Operational;
Operation of
the SVE system
began in 1990 | DOE Lead/DOE
Funding;
Westinghouse
Savannah River
Company | Nate Ellis
(DOE)
803-952-4846
Brian Looney
(WSRC)
803-725-5181 | | 6 | Holloman AFB, BX
Service Station, NM | Soil vapor
extraction may
supplement with
air injection | Service station
(SS - 17) | Soil 2 to 3 acres
down to 10 feet | VOCs (Benzene),
PAHs (Petroleum
Hydrocarbons) | In design; Design completion planned Winter 1993; Currently conducting pilot test. | USACE/Air Force
IRP Program;
Ensearch
Environmental,
Walk Haydel &
Associates -
Sub | Ron Stirling
(USACE)
402-221-7664 | | 6 | Holloman AFB, Main POL
Area, NM | Soil vapor
extraction Using
passive vent and
extraction
wells. | Former above
ground fuel
storage tank area
(JP-4 and AV Gas
spill) (SS-02/05) | Soil (quantity
unknown) | VOCs (Benzene),
PAHs (Petroleum
Hydrocarbons) | In design; Design completed; Installation and remedation to start in Spring 1994. | USACE/Air Force
IRP Program; IT | Ron Stirling
(USACE)
402-221-7664 | # Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 #### **Soil Vapor Extraction (continued)** | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|--|---|---|-------------------------|-----------------------------|--|---|--| | 6 | Kelly AFB, Site 1100*,
TX
See also
Bioremediation (In
Situ) | Soil Vapor
Extraction | Federal facility
(hazardous waste
facility) | Soil (8,900 cy) | VOCs (JP-4) | Operational; Vacuum extraction done before with bioventing, information the same. Completion in 2 years. | Kelly AFB/Air
Force Funded;
SAIC | Steve Escude
210-925-1812 | | 8 | Ft. Carson*, CO See also Bioremediation (In Situ) | Soil Vapor
Extraction | UST remediation | Soil down to 80
feet | VOCs (gasoline) | Operational;
completion
date unknown | Army
(USACE)/DoD
Financed - IRP;
Woodward Clyde | John Cloonan
719-526-8004 | | 9 | Davis Monthan AFB, AZ
See also
Bioremediation (In
Situ) | Soil vapor
extraction with
bioventing | Federal facility
JP-4 Pump House | Soil (63,000 cy) | VOCs (JP-4,
Benzene) | In design; Design completion planned Fall 1993; Completion delayed because awaiting funding | USACE/Air Force
Funded;
Montgomery
Watson - Design
Contractor | Mike
Steffansmeier,
USACE Omaha
402-221-7163
Karen Odom Air
Force
602-750-5595 | | 9 | Davis Monthan AFB,
Site 35, AZ
See also
Bioremediation (In
Situ) | Soil vapor
extraction with
bioventing | JP-4 pump house | Soil (63,000 cy) | VOCs (JP-4,
Benzene) | In design;
Design
completion
planned Fall
1993 | USACE/Air Force
Funded;
Montgomery
Watson - Design
Contractor | Mike
Steffansmeier
(USACE, Omaha)
402-221-7163 | Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 #### Soil Vapor Extraction (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site
Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|---|--|----------------------------|---|--|--|---| | 9 | Luke AFB, AZ
√ | Soil vapor
extraction with
air flushing and
thermal
oxidation of off
gases | Air Force fire
training pits | Soil (35,000 cy) | VOCs (2-hexanone,
2-butanone,
4-methyl
2-pentanone,
BTEX) | Completed; Operational from 11/91 to 5/92. Will conduct long-term monitoring afterward | USACE
Lead/State
Oversight;
Envirocon | Jerome
Stolinsky
(USACE)
402-221-7170
Dan McCafferty
(Envirocon)
406-523-1150 | | 9 | McClellan AFB OUD, CA | Soil Vapor
Extraction | Former fuel and
solvent disposal
site | Soil (12,000 cy) | VOCs (TCA, TCE,
1-1-DCE) | Operational;
Completion
planned Winter
1994; 5 years
to complete. | Aîr Force; CH2M
Hill | Steve Hodge
(McClellan AFB)
916-643-0830
Elaine Anderson
(McClellan AFB)
916-643-0830
Joseph Danko
(CHZM Hill)
503-752-4271 | | 9 | Seal Beach Navy
Weapons Station IR \
Site 14, CA
See also
Bioremediation (In
Situ) | Soil vapor
extraction with
combustion of
air emissions | Federal facility
Naval weapons
station | Soil (quantity
unknown) | VOCs (BTEX) | In design;
Operation to
start in 1994 | Navy/DoD
financed - IRP
Program; Jacobs
Engineering | Jeff Kidwell
(Navy)
619-532-2058
Steve McDonald
(Navy)
310-594-7655 | # Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 #### Soil Washing | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |--------|---|------------------------|--|----------------------------|-----------------------------|--|---|---| | 5 | Saginaw Bay Confined
Disposal Facility, MI | Soil Washing | Confined disposal island | Sediments (150 cy) | PCBs | Completed;
Summer 92 | COE
lead/Federal
Oversite;
Bergmann, USA | Jim Galloway
(COE)
313-226-6760
Rick Traver
(Bergmann)
203-684-6844 | | 5 | Twin Cities Army
Ammunition Plant, MN | Soil Washing | Munitions
manufacturing/
storage | Soil (quantity
unknown) | Metals (Lead,
Mercury) | Operational;
Completion
planned Summer
1994 | Federal
Facility/State
oversight;
Wenck
Associates,
Inc. | Peter Rissel
(US Army Env.
Center)
410-671-1504
Martin McCleery
(Twin Cities
AAP) | Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 June 1994 #### Other | Regi | on Site Name, Stat
(ROD Date) | e, Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment
Contractor (if
available) | Contacts/Phone | |------|--|---------------------------|-------------------------|------------------|-----------------------------|---|---|--| | 4 | Savannah River
Area Settling E
SC
See also
Bioremediation
Situ), Soil Van
Extraction | esin,
(In | Leaking solvent
line | Groundwater | VOCs (TCE, PCE) | Operational;
Operational
since 1990 | DOE lead/DOE
funding;
Westinghouse
Savannah River
Company | Nate Ellis
(DOE)
803-952-4846
Brian Lowry
(WSRC)
803-725-5181 | Appendix D Summary of Status Report Updates, Changes, Deletions THIS PAGE INTENTIONALLY LEFT BLANK #### Summary of Updates/Changes/Deletions Each edition of this report has added new information on the applications of innovative technologies at Superfund sites and has updated the status of existing innovative projects. The information added from ROD's from previous fiscal years that was deleted, or changed in each edition (from the first edition of the report published in January 1991 through this 5th edition) is described below to allow tracking of specific projects from edition to edition. Additions, Changes, and Deletions from the 1st edition report (January 1991) to the 2nd edition report (September 1991). | | | Technology (Listed | | 2nd Edition | | | | |--------|--|-----------------------|-------|--|----------------|---|---| | Region | Site Name, State (ROD Date) | in 1st Edition) | Added | Deleted | Changed to | Comments | Contacts/Phone | | 3 | Leetown Pesticides, WV (03/31/86) | Bioremediation | | Yes | | No further action. Risk re-
evaluated and was determined that
risk was not sufficient for remedial
action. | Andy Palestini
215-597-1286
Philip Rotstein
215-597-9023 | | 3 | Harvey-Knott Drum, DE (09/30/85) | In Situ Soil Flushing | | Yes | | During remedial design, sampling indicated VOCs were no longer present in the soils. Heavy metals remained at the surface. An ESD was issued on 12/92. Remedy will consist of capping the site. | Kate Lose
215-597-0910 | | 2 | SMS Instruments (Deer Park), NY (09/29/89) | Thermal Desorption | | Yes (changed
to soil vapor
extraction in
3rd edition) | | Misinterpretation of ROD during ROD analysis | Miko Fayon
212-264-4706 | | 1 | Re-Solve, MA (09/24/87) | Chemical Treatment | | | Dechlorination | Reclassified technology | Lorenzo Thantu
617-223-5500 | | 2 | GE Wiring Services, PR (09/30/88) | Chemical Extraction | | | Soil Washing | Reclassified technology | Caroline Kwan
212-264-0151 | | 6 | Sol Lynn/Industrial Transformers,
TX (03/25/88) | Chemical Treatment | | | Dechlorination | Reclassified technology | John Meyer
214-655-6735 | | 10 | Northwest Transformer, WA (09/15/89) | In Situ Vitrification | | Yes | | Technology dropped because commercial availability was delayed | Christine Psyk
206-553-6519 | Note: The 2nd edition report also added information on 45 innovative treatment technologies selected for remedial actions in FY 1990 RODs and 18 innovative treatment technologies used in removal actions. Additions, Changes, and Deletions from the 2nd edition report (September 1991) to the 3rd edition report (April 1992). | | | Technology (Listed | | 3rd Edition | 1 | | | |--------|---|------------------------------------|-------|-------------|-----------------------|---|--| | Region | Site Name, State (ROD Date) | Technology (Listed in 2nd Edition) | Added | Deleted | Changed to | Comments | Contacts/Phone | | 2 | Marathon Battery, NY (09/30/88) | Thermal Desorption | | Yes | | During design soil gas
concentration at hot spots was
below NY state standards. GW
monitoring will continue. | Pam Tames
212-264-1036 | | 2 | Goose Farm, NJ (09/27/85) | In Situ Soil Flushing | | Yes | | Incorrectly classified. Actually conducting pump and treat with treated water being reinjected | Laura Lombardo
212-264-6989 | | 2 | GE Wiring Services, PR (09/30/88) | Soil Washing | | | Thermal
Desorption | Possible pre-wash of debris with surfactants | Caroline Kwan
212-264-0151 | | 4 | Coleman-Evans Wood Preserving,
FL (09/26/90) | Soil Washing | | Yes | | Problems due to the presence of furans. Incineration likely | Tony Best
404-347-2643 | | 5 | Sangamo/Crab Orchard National
Wildlife Refuge, IL (08/01/90) | In Situ Vitrification | | Yes | Incineration | ROD specified the remedy as in situ vitrification or incineration. Incineration was chosen | Nan Gowda
312-353-9236 | | 5 | Anderson Development, MI
(09/28/90) | In Situ Vitrification | | | Thermal
Desorption | Because of concern by the community the remedy was changed. ROD amendment signed 9/30/91, and ESD was signed 10/2/92 | Jim Hahnenberg
312-353-4213 | | 5 | U.S. Aviex, MI (09/07/88) | In Situ Flushing | | Yes | | Cleanup levels reached by natural attenuation | Robert Whippo
312-886-4759 | | 6 | Atchison/Santa Fe/Clovis, NM (09/23/88) | Bioremediation (ex situ) | | Yes | | | Ky Nichols
214-655-6783 | | 6 | Crystal Chemical, TX (09/27/90) | In Situ Vitrification | | Yes | · | Remedy reconsidered after delay in commercial
availability of technology. Vitrification considered for hot spots only. Revised remedy will consist of capping and off-site disposal/consolidation of soils. | Lisa Price
214-655-6735 | | 9 | Solvent Service, CA (09/27/90) | Bioremediation
(in situ) | | Yes | | ROD was misinterpreted during
ROD analysis | Kevin Graves
510-286-0435
Steve Morse (CA)
570-286-0304 | | Region | Site Name, State (ROD Date) | Technology (Listed in 2nd Edition) | Added | 3rd Edition Deleted | Changed to | Comments | Contacts/Phone | |--------|-----------------------------|------------------------------------|-------|---------------------|-----------------------------|-------------------------|----------------------------| | 9 | Poly Carb, NV (Removal) | Bioremediation
(ex situ) | : | | Bioremediation
(in situ) | Reclassified technology | Bob Mandel
415-744-2290 | ### Additions, Changes, and Deletions from the 3rd edition report (April 1992) to the 4th edition report (October 1992). | | | Technology (Listed | | 4th Edition | | | | |--------|---|--------------------------|-----------------------|-------------|-----------------------------|--|-------------------------------| | Region | Site Name, State (ROD Date) | in 3rd Edition) | Added | Deleted | Changed to | Comments | Contacts/Phone | | 2 | Lipari Landfill Marsh Sediment, NJ
(07/11/88) | None | Thermal
Desorption | | · | Missed during original ROD analysis | Tom Graff
816-426-2296 | | 2 | GE Wiring Services PR (09/30/88) | Thermal Desorption | | | Soil Washing | | Caroline Kwan
212-264-0151 | | 5 | University of Minnesota, MN
(06/11/90) | Thermal Desorption | | Yes | Incineration in 5th edition | Issued an ESD in August 1991 to change remedy to Thermal Desorption or Incineration. Incineration was chosen because it was less expensive | Darrel Owens
312-886-7089 | | 6 | Sol Lynn/Industrial Dechlorination
Transformers, TX (03/25/88) | Dechlorination | | Yes | | Discontinued due to implementation difficulties | John Meyer
214-655-6735 | | 6 | Koppers/Texarkana, TX
(09/23/88) | Soil Washing | In Situ
Flushing | | | Remedy added by ROD amendment | Ursula Lennox
214-655-6735 | | 9 | Poly Carb, NV (Removal) | Bioremediation (in situ) | | | Bioremediation
(ex situ) | Reclassified technology | Bob Mandel
415-744-2290 | | 9 | Teledyne Semiconductors, CA (03/22/91) | Soil Vapor
Extraction | | Yes | | Mistakenly deleted from report | Sean Hogan
415-744-2233 | | 10 | Gould Battery (03/31/88) | Soil Washing | Soil Washing | | | Missed during original ROD analysis | Chip Humphries 503-326-2678 | Note: The 4th edition report also added information on 10 innovative treatment technologies selected for remedial action in FY 1992 RODs, and 21 innovative treatment technologies at non-Superfund sites. Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). | | | Technology Listed | | 5th Edition | | | | |--------|---|-----------------------------|-------|-------------|------------|---|---| | Region | Site Name, State (ROD Date) | in 4th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 1 | Re-Solve, MA (09/24/87) | Dechlorination | | Yes | | Pilot study showed that dechlorination increased the volume and that the waste still needed to be incinerated. An ESD to incinerate residuals off-site is in peer review. | Joe Lemay
617-573-9622 | | 1 | Pinette's Salvage Yard, ME (05/30/89) | Solvent Extraction | | Yes | | Will incinerate off-site | Ross Gilleland
617-573-5766 | | 2 | Naval Air Warfare Center, OU 1,
NJ (02/04/91) | In Situ Flushing | | Yes | | Remedy involves pump and treat with on-site discharge. Soil is not being targeted. | Jeff Gratz
212-264-6667 | | 2 | Naval Air Warfare Center, OU 2,
NJ (02/04/91) | In Situ Flushing | | Yes | , | Remedy involves pump and treat with on-site discharge. Soil is not being targeted. | Jeff Gratz
212-264-6667 | | 2 | Naval Air Warfare Center, OU 4,
NJ (02/04/91) | In Situ Flushing | | Yes | | Remedy involves pump and treat with on-site discharge. Soil is not being targeted. | Jeff Gratz
212-264-6667 | | 2 | Caldwell Trucking, NJ (09/25/86) | Thermal Desorption | | Yes | | Thermal desorption not needed because highly contaminated soil will be incinerated off-site instead. Remainder will be stabilized. ESD issued. | Ed Finnerty
212-264-3555 | | 3 | Tobylanna Army Depot, PA
(Non-Superfund project) | Bioremediation
(in situ) | | Yes | | Will conduct ex situ passive volatilization | Drew Lausch
215-597-3161
Ross Mantione
(Tobyhanna)
717-894-6494 | Note: The 5th edition report also adds information on 49 innovative treatment technologies selected for remedial actions in FY 1992 RODs, and 15 innovative treatment technologies used in removal actions. #### Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). (continued) | | | T 1 - F1 - 4 | | 5th Edition | | | | |--------|---|----------------------------------|--------------------------|-------------|------------|--|--------------------------------| | Region | Site Name, State (ROD Date) | Technology Listed in 4th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 4 | Smith's Farm Brooks
(09/30/91) | Dechlorination | Thermal
Desorption | | | Will alter chemistry to achieve dechlorination during thermal desorption. | Tony DeAngelo
404-347-7791 | | 4 | American Creosote Works, FL (09/28/89) | Soil Washing | | Yes | | Bench-scale study of soil washing showed that the concentrations of carcinogenic PAHs were not adequately reduced. Also discovered dioxins at much higher concentrations | Mark Fite
404-347-2643 | | 4 | American Creosote Works, FL (09/28/89) | Bioremediation (Ex
Situ) | | Yes | | Bench-scale study of bioremediation (ex situ) showed that the concentrations of carcinogenic PAHs were not adequately reduced. Also discovered dioxins at much higher concentrations | Mark Fite
404-347-2643 | | 4 | Hollingsworth Solderless, FL (04/10/86) | None | Soil Vapor
Extraction | | | Listed as soil aeration in 3rd edition | John Zimmerman
404-347-2643 | | 5 | Cliffs/Dow Dump, MI (09/27/89) | Bioremediation (In
Situ) | | Yes | | Bioremediation (in situ) was a misinterpretation of the ROD. All soil will be excavated and treated by bioremediation (ex situ). | Ken Glatz
312-886-1434 | | 6 | Tenth Street Dump/Junkyard, OK (09/27/90) | Dechlorination | | Yes | | Remedy has been suspended because of implementation difficulties and escalating cost. Cost doubled from cost projected in ROD. Issuing ROD amendment to cap in place. | Mike Overbay
214-655-8512 | | 7 | Fairfield Coal & Gas, IA (09/21/90) | Bioremediation (in situ) | | Yes | | Pilot study showed in situ bioremediation was too costly. It appears that the present pump and treat system will be able to achieve cleanup levels. | Bruce Morrison
913-551-7755 | ### Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). (continued) | | | Technology Listed | | 5th Edition | | | | |--------|---|-----------------------------|--------------------------|-------------|-----------------------|--|--| | Region | Site Name, State (ROD Date) | in 4th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 8 | Sand Creek Industrial OU 5, CO (09/28/90) | Soil Washing | | | Thermal
Desorption | Soil washing did not meet performance standards and was expensive. ROD amendment issued early September 1993. | Erna Acheson
303-294-1971 | | 9 | Koppers Company (Oroville), CA (04/04/90) | Bioremediation (Ex
Situ) | | Yes | | Misinterpretation of ROD during ROD analysis | Fred Schlauffler
415-744-2365 | | 9 | Signetics (AMD 901) TRW OU, CA (09/11/91) | None | Soil Vapor
Extraction | | | Remedy added | Joe Healy
415-744-2331
Kevin Graves
(CA)
510-286-0435 | | 9 | Teledyne Semiconductors, CA (09/30/91) | None | Soil Vapor
Extraction | | | Dropped by mistake from 4th edition | Sean Hogan
415-744-2233 | | 10 | IDEL Warm Waste Pond, ID (12/05/91) | Acid Extraction | | Yes | | Treatability study of acid extraction did not achieve good extraction rates. Did not reduce the volume of waste. Will excavate, consolidate and cap. | Linda Meyer
206-553-6636
Nolan Jenson
(DOE)
208-526-0436 | | 10 | IDEL Warm Waste Pond, ID (12/05/93) | Soil Washing | | Yes | | Treatability study of soil washing did not achieve results. Did not reduce the volume of waste. Will excavate, consolidate and cap. | Linda Meyer
206-553-6636
Nolan Jenson
(DOE)
208-526-0436 | Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). | | | | | 6th Edition | | | | |--------|--|-------------------------------------
-------|-------------|--|---|---| | Region | Site Name, State (ROD Date) | Technology Listed in 5th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 1 | Union Chemical Co., OU 1, ME (12/27/90) | Thermal Desorption | | | Soil Vapor
Extraction | Determined that SVE would be
more cost effective. ESD signed
March/April 1994. | Terry Connelly
617-573-9638
Christopher Rushton
(ME DEP)
207-287-2651 | | 1 | Tibbetts Road, NH (09/29/92) | In Situ
Soil Flushing | | Yes | | Misinterpretation of ROD during ROD analysis. Soil was not targeted for treatment. | Darryl Luce
617-573-5767
Mike Robinette (NH)
603-271-2014 | | 2 | Ewan Property, OU2, NJ (09/29/89) | Soil Washing,
Solvent Extraction | | Yes | | Re-evaluation of site found significantly less contaminated soil than original estimates. Soil will be disposed off site. ESD signed July 1994. | Kim O'Connell
212-264-8127
(temporary) | | 2 | Naval Air Engineering Center,
OU 7, Interim Action, NJ (03/16/92) | In Situ Flushing | | Yes | | Misinterpretation of the ROD during ROD analysis. | Jeff Gratz
212-264-6667
Robert Wing
212-264-8670 | | 2 | Solvent Savers, NY (09/30/90) | Soil Vapor
Extraction | | Yes | | SVE is a secondary remedy which may be used instead of thermal desorption, the primary remedy, if treatability studies show to be effective. | Lisa Wong
212-264-9348 | | 3 | U.S. Titanium, VA (11/21/89) | In Situ Flushing | | | Neutralization
with lime
(Ex Situ) | Treatability studies indicated that the technology was not feasible. ESD under preparation. | Vance Evans
215-597-8485
Jeff Howard (VA)
804-762-4203 | | 3 | L.A. Clarke & Sons, OU 1 (Soils),
VA (03/31/88) | Bioremediation
(In Situ) | | Yes | | Facility no longer in operation. Can now excavate. Remedies being considered include thermal desorption. | Andy Palestini
215-597-1286 | Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued) | | | Technology Listed | | 6th Edition | | | | |--------|---|--|-------|-------------|----------------------------|---|---| | Region | Site Name, State (ROD Date) | in 5th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 3 | L.A. Clarke & Sons, OU 1 (Soils),
VA (03/31/88) | In Situ Flushing | | Yes | | Facility no longer in operation. Can now excavate. Remedies being considered include thermal desorption. | Andy Palestini
215-597-1286 | | 3 | L.A. Clarke & Sons,
Lagoon Sludge OU, VA (03/31/88) | Bioremediation
(Ex Situ) | | | Re-use as fuel
off-site | Technology changed because of uncertainty about the ability of bioremediation to reach treatment goals. ESD signed 3/94. | Andy Palestini
215-597-1286 | | 3 | Henderson Road, PA (06/30/88) | Soil Vapor
Extraction | | Yes | | Only conducted air injection to facilitate pump and treat. Vapors were not extracted. Further investigation revealed that the Vadose Zone was not an area of concern. | Joe McDowell
215-597-8240 | | 4 | Cabot Carbon/Koppers
(Groundwater), FL (09/27/90) | Bioremediation
(In Situ
Groundwater) | | Yes | | Groundwater not being treated. Only soil is being treated. | Patsy Goldberg
404-347-6265 | | 4 | Benfield Industries, NC (07/31/92) | Soil Washing
Bioremediation
Slurry phase | | | Land
Treatment | Land treatment determined to be more cost effective. | Jon Bornholm
404-347-7791 | | 4 | Charles Macon Lagoon,
Lagoon #10, NC (09/31/91) | Bioremediation
(Ex Situ) | | Yes | | Treatability study indicated that
the technology could not treat the
contaminants of concern because
of materials problems. Will
excavate and dispose off-site.
ROD Amendment signed 3/94. | Geizelle Bennett
404-347-7791
David Lown (NC)
919-733-2801 | | 4 | Palmetto Wood Preserving, SC (09/30/87) | Chemical Treatment | | Yes | | Waste will be disposed off-site
more cost effectively | Al Cherry
(404) 342-7791 | | 4 | Arlington Blending & Packaging
Co., OU1, TN (06/28/91) | Dechlorination | | Yes | | Another disposal method likely to be used. | Derek Matory
404-347-7791 | #### Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued) | | | Technology Listed | | 6th Edition | | | | |--------|---|--|---|-------------|----------------------------|---|--| | Region | Site Name, State (ROD Date) | in 5th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 5 | South Andover Salvage Yard, OU 2, MN (12/24/91) | Bioremediation
(Ex Situ) | | Yes | Thermal
Treatment | Technology changed to off-site thermal treatment (either thermal desorption or incineration) because of reduced volume of contamination found during RD investigations. ROD amendment signed 5/31/94. | Bruce Sypniewski
312-886-6189 | | 5 | Allied Chem & Ironton Coke, OU 2,
OH (12/28/90) | Bioremediation
(In Situ) | Bioremediation
(Ex Situ) (Land
Farming) | | | Adding technology to treat more highly contaminated soil. | Tom Alcamo
312-886-7278 | | 5 | Allied Chem & Ironton Coke, OU 2,
OH (12/28/90) | Bioremediation
(In Situ) | Bioremediation
(Ex Situ)
Magnetically
Enhanced Land
Farming | · | | Adding technology to treat more highly contaminated soil. | Tom Alcamo
312-886-7278 | | 5 | United Scrap Lead/SIA, OH
(09/30/88) | Soil Washing | | Yes | | Determined to be too expensive. Other alternatives being evaluated. ROD Amendment planned. | Anita Boseman
312-886-6941
Timothy Hull (OH)
513-285-6357 | | 5 | MacGillis and Gibbs Co./Bell
Lumber and Pole Co., MN
(12/31/92) | Soil Washing and
Bioremediation (ex
situ) of fines | | Yes | Incineration
on-site | Incineration was contingency remedy in ROD. State had concerns about effective means of soil washing and cost of incineration has decreased; ESD will be signed Fall 1994. | Daryl Owens
312-886-7089 | | 6 | Fruitland Drum, NM (09/08/90) | Dechlorination | | | Incineration
(Off-site) | Dechlorination not being pursued because of cost considerations. | Gregory Fife
214-655-6773 | | 6 | Holloman AFB, Main POL Area,
NM | Bioremediation
(In Situ)
(Groundwater) | | Yes | | Groundwater remediation not planned for this area. | Ron Stirling
(USACE)
402-221-7664 | #### Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued) | | | Technology Listed | | 6th Edition | | | | |--------|--|--|-------|-------------|---|--|---| | Region | Site Name, State (ROD Date) | in 5th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 6 | Holloman AFB, Main POL Area,
NM | Air Sparging | | Yes | | Groundwater remediation not planned for this area. | Ron Stirling
(USACE)
402-221-7664 | | 6 | South Valley, NM (09/30/88) | Soil Vapor
Extraction | | Yes | | Determined there was insignificant concentration to warrant remediation. No further action. | Bert Gorrod
214-655-6779 | | 6 | Tinker AFB (Soldier Creek Bldg.
3001), OK (08/16/90) | Soil Vapor
Extraction | | Yes | | Determined that SVE was not viable. No alternative selected at this point. | Susan Webster
214-655-6784
Major Richard
Ashworth (USAF)
405-734-3058 | | 8 | Rocky Mountain Arsenal, M-1
Basins (OU 16), CO (02/26/90) | In Situ
Vitrification | | Yes | | Remedy cancelled due to problems with contractor. New ROD being negotiated. | Connally Mears
303-293-1528 | | 8 | Portland Cement Co. (Kiln Dust No. 2 and No. 3) OU2, UT (03/31/92) | Chemical Treatment | | Yes | | Not considered innovative | Mike McCeney
303 293-1526 | | 9 | Mesa Area Ground Water
Contamination, AZ (09/27/91) | Soil Vapor
Extraction | | Yes | ;
, | Removed from NPL, deferred to the State | Maurice Chait
602-962-2187
Richard Oln
602-207-4176 | | 9 | Castle Air Force Base, OU 1, CA (09/30/91) | Bioremediation
(In Situ
Groundwater) | | Yes | Pump and
Treat with Air
Stripping | Bench-scale test indicated that the technology did not work. No ESD or ROD amendment being issued. | David Roberts
415-744-1487
Brad Hicks (USAF)
209-726-4841 | | 9 | Teledyne Semi Conductors, CA (03/22/91) | Soil Vapor
Extraction | | Yes | | Misintrepretation of the ROD.
SVE intended only for Spectra
Physics, the adjacent site. | Sean Hogan
415-744-2233
Carla Dube
510-286-1041 | ### Additions, Changes, and Deletions from the 5th
edition report (September 1993) to the 6th edition report (September 1994). (continued) | | | Technology Listed | | 6th Edition | | | | |--------|---|-----------------------------|-------|-------------|------------|--|--| | Region | Site Name, State (ROD Date) | in 5th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 9 | FMC (Fresno), CA (06/28/91) | Soil Washing | | Yes | | Soil washing did not work because the soil had too many fines. Looking at thermal desorption and solidification/ stabilization as possible remedies. | Tom Dunkelman
415-744-2287
Mike Pfister (CA)
209-297-3934 | | 9 | Signetics (Advanced Micro Devices 901), CA (09/11/91) | Soil Vapor
Extraction | | Yes | | Combined ROD for Signetics,
AMD 901/902 and TRW
Microwave site. SVE is not
being done at the TRW OU.
Misinterpretation of ROD. | Darrin Swartz-Larson
415-744-2233
Kevin Graves (CA)
510-286-0435 | | 9 | Sacramento Army Depot, Oxidation
Lagoons OU, CA (09/30/92) | Soil Washing | | Yes | | Technology canceled due to cost. Looking at solidification as an alternative. | Marlin Mezquita 415-744-2393 George Siller (USACE) 916-557-7418 Dan Oburn (Sacramento Army Depot) 916-388-4344 | | 10 | McChord AFB Washrack Treatment
Area, AK (09/28/92) | Bioremediation
(Ex Situ) | | Yes | | Additional studies showed treatment not needed. | Marie Jennings
206-553-1173 | Appendix E Completed Innovative Projects and Treatment Trains #### TABLE E-1 #### REMEDIAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS Table E-1 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at remedial sites. It is intended to supplement, not replace, the information included in table A-1. | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|--|---|---|--|---|---|--| | 7 | Cannon Engineering/MA
5/90 to 10/90 | Thermal desorption/ Canonie Environmental Services Corp., Porter, IN | Soil
(11,300 tons) | TCE, DCE, PCE, BTEX, vinyl chloride, chlorobenzene, SVOCs Criteria: 0.1 ppm - TCE, DCE, PCE, chlorobenzene 0.2 ppm - Toluene, Total Xylenes 0.05 ppm - Vinyl chloride SVOCs - 3 ppm Benzene - 0.1 ppm Input 500 - 3,000 ppm (Total VOCs) Output - <0.025 ppm (Total VOCs) | Continuous operation 40 tons/hr 450 - 500° F Moisture content before treatment - 5% - 25% moisture Additives - dry soil (to reduce moisture content) | Excavation
Screening
Mixing
Dewatering | Exhaust gas treated with baghouse, scrubber, and carbon adsorption Scrubber water was treated with carbon adsorption | The waste feed size limitation for the equipment, 1.875 inches, was an important consideration. More information is available in the RA report available from Region 1. | | 1 | McKin, ME
7/86 to 4/87 | Thermal desorption/ Canonie Env. Services Corp., Porter, IN | Soil
(11,500 cy to a
depth of 10 ft.) | BTEX, PAHs, TCE Criteria: 0.1 ppm TCE averaged over batch treatment volume 1.0 ppm per individual aromatic organic compound, and PAHs 10.0 ppm for total PAH constituents Input: Up to 3,310 ppm TCE Output: Less than 0.1 ppm TCE | Batch process: 8-9
cy/batch
Residence time:
2 minutes/pass,
3 passes per
batch
250-400°F soil
exit temperature | Excavation
Screening
Mixing | Exhaust gas treated with baghouse, scrubber, and carbon adsorption Scrubber water was treated with carbon adsorption Residual solids deposited on- site. HEPA filters, baghouse bags, and PPE incinerated off-site | | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|--|---|---|---|-----------------------------------|--|--| | 1 | Ottati & Goss, NH
6/89 to 9/89 | Thermal desorption/ Canonie Environmental Services Corp., Porter, IN | Soil (5,100 cy) | TCE, PCE, DCA, BTEX, TCA Criteria: 1 ppm - Total VOCs 0.1 ppm DCA, benzene, TCE, PCE Input: Up to 460 ppm TCE, 1200 ppm PCE Output: Less than 0.025 ppm TCE, PCE | Batch process 300-400° F soil exit temperature | Excavation
Screening | Exhaust gas treated with baghouse, scrubber, and carbon adsorption Scrubber water treated with carbon adsorption Residual solids stabilized and redeposited on- site | For more information
on this project, see
the close out report
available from Region
1. | | 2# | King of Prussia, NJ
6/93 - 10/93 | Soil Washing using water and proprietary additive Alternative Remedial Technologies, Inc. | Soil, sludge,
and sediments
(19,200 tons) | Metals (Chromium,
Copper, Nickel)
Criteria:
11 metal-specific
cleanup levels based
on risk of exposure | Continuous process Feed rate: 25 tons/hr Addition of polymer and surfactants | Excavation
Screening | Residual
sludges
disposed off-
site as non-
hazardous waste | X-ray fluorescene
(XRF) used on-site for
selective excavation | | 2# | SMS Instruments/
Deer Park, NY
4/92 to 12/93 | Soil Vapor
Extraction/
Four Seasons
Environmental,
Inc.
Greensboro, NC | Soil (1,250 cy) | VOCs, SVOCs Criteria: Levels specified for nine VOCs and nine SVOCs, ranging from 500 to 4,500 μg/kg Input: >1,000 ppm total VOCs Output: All soil samples met criteria | Two horizontal vapor extraction wells Vacuum of 378-406 w.c. inches (absolute) Depth to groundwater: 16-24 feet | None (in situ) | Exhaust gases
were treated
with a
catalytic
incinerator and
scubber | | | 2# | Waldick Aerospace
Devices (QU 1), NJ
5/93 to 10/93 | Low temperature
thermal
treatment
Rust Remedial
Services, Inc.,
SC | Soil (4,000 cy) | Criteria:
Total VOCs: 1 ppm
Total petroleum
hydrocarbons: 100
ppm | 20 tons/hr,
450 - 500°F | Screening | Vapors treated in secondary thermal treatment unit; off-site s/s of treated soils | First use of full-
scale unit; actual
design capacity of
unit is approximately
35 tons/hr. | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|--|---|--|---|---|--|---| | 2 | Wide Beach Development,
NY
9/90 to 9/91 | Thermal desorption with APEG dechlorination/ SoilTech ATP Systems, Inc. Porter, IN | Soil (42,000
tons) | PCBs Criteria: Soils >10
ppm PCBs to be excavated and chemically treated 2 ppm PCBs established as remedial action contract cleanup level Input: 11-68 ppm PCBs Cutput: ≤2 ppm PCBs; one sample contained 21 ppm PCBs | Continuous process Preheat/retort zone residence time: 30-40 minutes Retort zone temperature: 1,160° F Combustion zone temperature: 1,293° F Additives: Alkaline polyethylene glycol (APEG) | Excavation
Shredding,
grinding
Magnetic
screening | Exhaust gas treated with cyclone, baghouse, acid gas scrubber, and activated carbon adsorption Treated solids were intended to be redeposited; however, they were determined to be unstable for backfilling | For further information on this dechlorination project, see the Demonstration Test Report produced by EPA, Region 2. | | 2 | Upjohn Manufacturing
Company, PR
1/83 to 3/88 | Soil Vapor
Extraction
Terra Vac,
Corp.
Costa Mesa, CA | Soil (16,000 sq
ft to
approximately
100 ft deep) Approximately
17,800 gallons
of CCL, was
removed from the
soil | Carbon tetrachloride (CCl ₄) Criteria: 50 µg/liter CCl ₄ (drinking water limit); calculated to correspond to "non-detectable" concentration of CCl ₄ in exhaust gas for three consecutive months Input: Up to 2,200 ppm CCl ₄ (initial concentration) Output: Less than 2 ppb (final concentration) | 19 vacuum extraction wells Depth of primary extraction well: 75 feet Operational inlet vacuum: 12 inches Hg | None | Discharge of
soil vapors
through 30-ft
stack
No other off-
gas treatment | For further information on this application, see the Applications Analysis Report for the Terra Vac In situ Vacuum Extraction System (EPA/540/AS-89/003). | | 3# | Defense General Supply
Center, OU5, VA
December 1-11, 1992 | Soil Vapor
Extraction
Engineering-
Science | Soil (1,000 cy) | VOCs (PCE, TCE) | In situ using one
extraction well | | | Pilot study conducted
12/1/92 - 12/11/92
Soil samples revealed
the soil showed no
further contamination | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|--|-------------------------------------|--|--|--|--|--| | 4 | Brown Wood Preserving,
FL
10/88 to 12/91 | Land treatment/ Remediation Technologies, Inc. Seattle, Washington | Soil/pond
sediment (7,500
cy) | PAHs, defined in terms of total carcinogenic indicator chemicals (TCICs) Criteria: 100 ppm TCICs sampled on 8 subplots Input: Up to 208 ppm TCICs Output: Less than 92 ppm TCICs | Soil treated in 3
lifts Retention time: 4 to 15 months Additives: water and nutrients Mixing rate: tilled once every two weeks | Site preparation (land clearing) Excavation Screening Tilling | Treated material vegetated with grass (no cap) Retention pond constructed for rumoff | Further information on this project is available from the Remedial Action Close Out Report. | | 4 | Hollingsworth
Solderless, FL
1/91 to 7/91 | Soil vapor
extraction
EBASCO (ARCS
contractor) | Soil 60 cy (down
to 7 feet deep) | TCE, vinyl chloride
Target: total VCCs
1 ppm | In situ | None required | Air emissions
vented to
atmosphere | Design specifications were very critical. Need to pay close attention to design specifications | | 4# | Wamchem, SC
During 8/93 | Thermal desorption Four Seasons Greensboro, NC | Soil (2,200 cy) | Criteria: Acetone - 97 ppm Benzene - 2.43 ppm 1,2-Dichlorobenzene 33.43 ppm 1,4-Dichlorobenzene 38.06 ppm 2,4-Dinitrotoluene - 3.62 ppm Naphthalene - 74.6 ppm Toluene - 34.5 ppm 1,2,4- Trichlorobenzene - 4.23 ppm Total Xylenes - 67.6 ppm | Continuous feed
5-7 tons/hr | | Catalytic
oxidation of
off-gas | | | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|--|--|---|---|------------------------------------|---|--| | 5# | Ninth Avenue Dump, IN
2/92 to 3/94 | In situ
Flushing
Fluor Daniel
Chicago, IL | Soil (64,000 cy) | VOCs (TCE, BTEX) PAHs Pumped until no more oil recovered Inside slurry wall treated water 90% reduction in COD | 14 extraction wells, unknown number of trenches 6,300 gallons of oil recovered | | Recovered oil sent off-site for incineration, water recovered sent through oil/water separator, iron removal, and biological treatment prior to reinjection | | | 5 | Seymour Recycling, IN
Summer - 1990
August-October, 1986
January-February, 1987 | In situ soil
bioremediation
ABB
Environmental
Services | Soil
(12 acres to 10
ft deep,
approximately
43,500 cy) | 54 contaminants
present, including
TCE, TCA, and Carbon
Tetrachloride
No standards or
criteria for this OU
in ROD | Additives - nitrogen, phosphorus, potassium, sulfur as fertilizer (200,000 gallons of nutrients added) | Tilling | Capping in place | The soil became saturated quickly during this project, creating surface pools. The specially-designed tractor got stuck. | | 5 | Outboard Marine
Corp./Waukegan Harbor
(OU #3), IL
1/92 to 7/92 | Thermal Desorption SoilTech ATP Systems, Inc. Porter, IN | Soil/Sediments
(12,800 tons) | PCBs Criteria: 97% removal of PCBs Initial: 23,000 ppm PCBs Final: Achieved >97% removal, <9 ppm PCBs in treated soil | Continuous process Residence time: 15 minutes Throughput: 8 tons/hr Preheat zone temperature: 850° F Retort zone temperature: 1200° F Combustion zone temperature: 1300° F | Excavation
Mixing
Dewatering | Exhaust gas treated with cyclone, baghouse, acid gas scrubber, and activated carbon adsorption Condensed water discharged to sanitary sewer after triple filtration, UV oxidation, and carbon adsorption | Reduced PCB levels much more than expected. | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|--|---|--|--|--|--|---| | 5# | Anderson Development
(ROD Amendment), HI
11/92 to 6/93 | Thermal desorption Weston Services, Inc. | Soil (5,100
tons) | SVOCs (MBOCA) Input: 660 ppm (maximum) MBOCA Criteria: 1.684 ppm MBOCA Output: <1.684 ppm MBOCA Greater than 99% removal | Continuous with a retention time of 1 hour and throughput of 50-60 tons per day. Temperature 500 -600°F. Moisture content 40-50% Most of waste was treated twice because 1 hour retention time was not enough. | Excavation
screening
dewatering
Stockpiling | Wastewater discharged to treatment facility. Treated soils and fly ash sent to Type II Landfill. Carbon sent to RCRA disposal facility | Site reports
available. | | 5 | Verona Well Field
(Thomas Solvent/Raymond
Road)
(OU1), MI
3/88 to 5/92 | Soil vapor extraction (attempted nitrogen sparging) Terra Vac, Inc. Costa Mesa, CA | Soil (26,700 cy,
36,000 ft ² to a
depth of 20 ft.) | Initial soil concentration TCE 550,000 ppb; PCE 1.8 million ppb; Toluene 730,000 ppb; Xylene 420,000 ppb Criteria in all post remedial soil samples; Total Xylenes 6,000 ppb; Toluene 16,000 ppb; Benzene 20 ppb; Ethylbenzene 14,000 ppb; 1,1- DCE 10 ppb; trans-1,2-DCE 2,000 ppb; 1,1,1-TCA 4,000 ppb; Carbon tet., 10 ppb; 1,2- DCA 10 ppb; 1,1-DCA 20 ppb; Methylene chloride 100 ppb; cis-1,2 DCE 20 ppb; PCE 10 ppb; TCE 60 ppb | 1,400-1,600 cu ft/
min of air
Started >1,000
lbs/day removed
Total removed
45,000 lbs of VOCs
23 extraction
wells | No materials handling; required installing extraction wells Vapors initially treated with carbon; then with CATOX; and then returned to carbon | Spent carbon was regenerated (and eventually incinerated) | Initial estimate of product too low. Treatment equipment undersized. Needed better quantification of VOCs in soils to design appropriate size. Plan for enhancing system to deal with saturated soils and free product. Public information available includes performance report, and technical memo. | | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|--|---|---|---|--|---|---| | 5# | Pristine, OH
9/93 to 3/94 | Thermal
desorption | Soil (19,400 cy) | Criteria: aldrin - 15 µg/kg benzene - 116 µg/kg chloroform - 2,043 µg/kg DDT - 487 µg/kg 1,2-DCA - 19 µg/kg 1,1-DCE - 285 µg/kg dieldrin - 6 µg/kg PAHs - 14 µg/kg dioxin - 0 µg/kg PCE - 3,244 µg/kg TCE - 175 µg/kg | | | | | | 6# | French Ltd.
Crosby, TX
1/92 to 12/93 | Bioremediation
(slurry phase)
ENSR
Houston, TX | Soil/sludge
(150,000 cy) | Volatile organic
compounds; PCBs;
phenols, heavy
metals
Cleanup Goals:
Benzo(a)pyrene - 9
ppm
PCB - 23 ppm
Volatile organic
compounds - 43 ppm
Arsenic - 7 ppm
Benzene - 14 ppm | In situ treatment | Air sparging
Pumping
Dredging | In situ
treatment | First use of
bioremediation
technology at a
Superfund site
Cleanup of
contaminated
groundwater to be
completed in 1996 | | 7# | Hastings GW
Contamination, Well No.
3, NE
6/92 to 7/93 | Soil vapor
extraction
Morrison
Knudsen | Soil 1 acre down
to 120 feet deep
(approximately
194,000 cy) | Carbon tetrachloride
Initial: 100 ppm
Final: <0.2 ppm
Target removal rate
achieved was 0.001
lb/hr, removed in
excess of 500 lbs | In situ cyclic
operation,
operated for a
total of 4,325
hours | Vapors treated
with granular
activated
carbon (GAC) | Carbon sent
off-site for
regeneration | Soil Vapor extraction system exceeded predictions by the model due to sand and gravel present at the site. Cleanup occurred much quicker than predicted by the model. | | 8 | Rocky Mountain Arsenal
(OU 18) Interim
Response, CO
6/91 to 12/91 | Soil vapor
extraction Vapor phase
carbon
adsorption to
capture vapors Woodward Clyde
Denver, CO | Soil (100 ft
radius down to
60 ft;
approximately
70,000 cy) | TCE Initial extracted gas concentration 60 ppm Final extracted gas concentration 2 to 3 ppm | 145-335 cu. ft./min. of air Total removed 70 lbs. 2 extraction wells | No materials
handling;
required
installing
extraction
wells | Vapors captured
on carbon | Sampling indicated the
presence of TCE mainly
in the soil gas
samples and not the
soil samples | June 1994 | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|--|-----------------------------|---|--|-----------------------------------|---|--| | 8# | Wastech Chemical, UT
10/92 to 12/92 | Bioremediation
(Ex situ) Land
treatment on an
asphalt pad
Harding/Lawson | Soil (1,100 cy) | VOCs (Toluene,
Xylene) | Tilled, addition
of nutrients and
water | | Soil
redeposited on
site | Air emission standards
not exceeded | | 9 | Fairchild
Semiconductor (San
Jose), CA
1/89 to 6/90 | Soil vapor
extraction, in
situ flushing
with treated
groundwater | Soil (42,000 cy) | TCA, DCE, IPA, xylenes, acetone, Freon-113, PCE ROD originally stated cleanup target of 1 ppm Amended cleanup goals required SVE operation until VOC removal rate was ≤10% of initial rate, or VOC removal rate was <1% per day for 10 consecutive days | 39 extraction wells; 28-144 scfm air flow rate; 15 inches of Hg operating vacuum | None | In situ
treatment;
carbon
adsorption of
off-gases | Groundwater pump and treat was conducted in conjunction with SVE; slurry wall was constructed to limit contaminant migration | | 9# | Intersil/Siemens, CA Intersil portion of the site completed Fall 93 | Soil Vapor
Extraction
Geo-Matrix, San
Francisco, CA | Soil | VOCs (TCE 1,1,1-TCA,
XyLene) | | | | | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|--|---|---|---|-----------------------------------|---|--| | 9 | Sacramento Army Depot
Tank 2 Operable Unit, CA
8/92 to 1/93 | In-situ soil vapor extraction, extracted vapor treated with gas phase carbon adsorption, water treatment by the existing on-site UV- hydrogen peroxide treatment plant/Terra Vac, Inc. San Leandro, CA | Soil (1,000 cy,
25 by 35 ft.,
31 ft. depth) | VOCs (Ethylbenzene, PCE, MEK Total Xylenes) Initial concentration: MEK 0.011 - 150 mg/kg Ethylbenzene 0.006 - 2,100 mg/kg PCE 0.006 - 390 mg/kg Total Xylene 0.005 - 11,000 mg/kg Clean up goal 1.2 mg/kg MEK 6 mg/kg Ethylbenzene 23 mg/kg total Xylene 0.2 mg/kg PCE 100 mg/kg PCE 100 mg/kg total hydrocarbons | 24 hours/day
Air flow rate:
16-365 scfm | None | Extracted vapor treated with gas phase carbon adsorption water treatment by the existing on-site UV-hydrogen peroxide treatment plant | Freon - 113 unexpectedly extracted by system - impacted system operation | #### **TABLE E-2** #### REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS Table E-2 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at removal sites. It is intended to supplement, not replace, the information included in table B-2. ### TABLE E-2 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|---|-----------------------------|---|---|-----------------------------------
---|---| | 2 | Signo Trading
International, Inc., NY
10/20/87 to 10/21/87
(Removal) | KPEG
dechlorination/
Galson
Remediation,
Syracuse, NY | Sludge (15
gallons) | Dioxin
Input - 135 ppb
Output - 1 ppb | Temperature:
150°C
Time: Overnight | None | Incineration of residuals (without dioxin contamination) at treatment, storage, and disposal facility | | | 2 | Vineland Chemical
Company, NJ
12/92
(Removal) | Mercury pretreatment precipiated mercury salts into mercury sulfide so that the mercury can be recovered and recycled. ENSCO | Solid 100 lbs | Mercury initial concentration >10% mercury Final concentration of mercury in recyclable precipitate was greater than 80%. Less than 260 ppm if mercury in thath nonrecycled salt. | Added salt to
precipitate the
mercury | None | Residual salts
containing less
than 260 pm
mercury were
incinerated
off-site | First known Superfund
site where this
process has been
applied | | 2 | Zhiegner Refining
Company (Removal)
2/93 - 6/93 | Mercury pretreatment precipiated mercury salts into mercury sulfide so that the mercury can be recovered and recycled. ENSCO | Solid 100 lbs | Mercury initial concentration >10% mercury Final concentration of mercury in recyclable precipitate was greater than 80%. Less than 260 ppm if mercury in thatn nonrecycled salt. | Added salt to
precipitate the
mercury | None | Residual salts
containing less
than 260 pm
mercury were
incinerated
off-site | No comments | | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|---|---|--|--|---|---|---| | 3 | Avtex fibers, VA
4/90 to 8/91
(Removal) | Chemical treatment (oxidation using NaClO) OH Materials, Findlay, OH (ERCS Contractor) | Sludge/water
from storage
unit (2 million
gallons) | Carbon disulfide Criteria: ≤10 ppm - Carbon disulfide in the effluent Input: 50-200,000 ppm Carbon disulfide Output: ≤10 ppm Carbon disulfide | Batch operation average retention time - 1 hour pH - 10 Additives: Sodium hypochloride. The retention time and reagent feed rates increased with increasing concentration of sludge in the contaminated water. | Pumping | Salts from the reaction were removed with flocculation and clarification at existing treatment plant, pH adjustment | Carbon disulfide is unstable and will be found with other contaminants in aqueous waste stream. For additional information on this project, see the Removal Close Out Report available from EPA - Region III or OH Materials. | | 4 | General Refining Company, GA August-October, 1986 January-February, 1987 (Removal) | Solvent
extraction
Resource
Conservation
Technology
Company,
Bellevue, WA | Sludge (3,448
tons) | Input: PCB - 5.0 ppm Lead - 10,000 ppm Output: PCB - insignificant Lead - concentrated in solids | Continuous operation Time: 2 hours pH: 10 Temp: 20°C Rate: 27 tons/day Moisture content - 60% Additives: Sodium hydroxide Triethylamine | Excavation
Screening
Neutralization
Size Reduction
Mixing | Oil - used as
fuel for kiln
Water -
treated,
discharged off
site
Solids -
solidified and
disposed of on
site | The oil recovered from the extractions process could not be sold because of an elevated metals content. The solvent could not be recovered due to leaks in system seals. The unit required a relatively uniform material so materials handling of the sludges proved difficult in the beginning of the project. The leadbearing solids produced by the dryer also required special handling. Finally, detergents in the sludge hindered oil/water separation. | | Regian | | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|---|--|--|---|--|--|---| | 4 | Hinson Chemical, SC
12/88 to 3/92 (Removal) | Soil vapor
extraction
OH Materials
Atlanta, GA | Soil
(60,000 cy, up
to 50 ft deep) | Benzene, TCE, PCE,
DCA, MEK At completion: <10 ppm Total VOCs
(In all samples);
average <1 ppm Total
VOCs | In situ; continuous operation (except for occasional shut downs to allow soil gas to reach equilibrium in the pore spaces) | | Air emissions
captured on
vapor phase
carbon
No cap needed | · | | 4 | CSX McCormick Derailment
Site, S.C.
(Removal) | Soil vapor
extraction with
air flushing
MWRI | Soil (200,000
cy) | Benzene-toluene-
ethylbenzene-xylene
(BTEX)
130,000 gallon spill | Used a system of extraction and injection wells. 1,000 separate PVC wells. Injection wells 7 to 8 feet deep. Extraction Wells 2-3 feet deep. Vapors captured and put through a knock out pot and incinerated. | Brought in
clay to cover
the area, to
prevent air
from
infiltrating | Residual
wastewater sent
off-site for
treatment | System was successful in decreasing concentration to cleanup goals. Had difficulties due to fluctuation of shallow ground water. Did not anticipate the change in ground water to be as drastic as it was. It decreased the efficiency, less vapors and more water. Now need to address ground water. Could have used the soil vapor extraction in a more limited area. | | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|--|-----------------------------|--|--|--|--|---| | 4 | Basket Creek Surface
Impoundment, GA
11/92 - 2/93 (Removal) | Vacuum extraction of soil pile with horizontal wells (ex-situ) OHM | Soil (2,000 cy) | VOCS TCE, PCE, MEK, MIBK, BTEX High 33% VOCS Average 1-5% Criteria: TCE - 0.5 mg/L TCLP PCE - 0.7 mg/L TCLP All VOCs met TCLP limits | Vacuum pressure
monitored. 1,300
CFM/Manifold
3 manifold
6-7 wells/manifold | Surface impoundment used for disposal of waste solvents. Built an enclosure over the site. Excavated the soil and screened it with a power screen. Stacked on PVC extraction wells. Recovered VOCs with duct work and fan. Vapors incinerated. | Residual soils and rejects from screening met TCLP limits and were disposed as nonhazardous as on RCRA Subtitle D landfill. Incinerated 70,000 lbs of VOCs | \$2,000,000 total costs. Permeability in-situ soil was not good at first. Excavation and ex-situ
treatment improved permeability. Shouldn't rule out if you can't do in situ. | | 4# | TH Agriculture and
Nutrition
Albany, GA | Thermal
desorption/
Focus and
Williams
Environmental
Services, Inc. | Soil (4,318
tons) | Pesticides Criteria: Reduction of 90% in concentration of alpha and beta BHC; 4,4'-DDT; and toxaphene Less than 100 mg/kg total OCL pesticides in treated soil | Continuous operation 7.8 tons/hr 250 - 510° F exit gas temperature 15 minutes residence time | Excavation
Screening | Soils:
quenched Off-gasses:
baghouse, water
quench,
reheaters, and
carbon
adsorption
water: carbon
adsorption | | | 5# | Parson Chemical, MI | In situ
vitrification | Soil (3,000 cy) | | | | | Confirmatory sampling
to occur after melt
cools (approximately
Summer 1995) | # TABLE E-2 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | | | | <u> </u> | | | | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | |--------|---|--|---|---|--|--------------------------------------|---|----------| | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | | 5 | PBM Enterprises, MI
3/25/85 to 10/28/85
(Removal) | Neutralization with hypochlorite process Mid-American Environmental Service, Riverdale, IL | Film chips (464
tons or 1,280
cy) | Cyanide
Input: 200 ppm
Output: 20 ppm | Time: 2-3 hours Additives: sodium hydroxide | Agitation | Rinse water,
runoff and
waste
hypochlorite -
treated off
site
Treated chips -
landfilled
(Subtitle D) | | | 6 | Traband Warehouse
PCBs, OK (Removal)
2/90 to 9/90 | Solvent
Extraction/
Terra Kleen | Solids | PCBs
Initial: 7,500 ppm | | | (Subtricte b) | | | 7 | Crown Plating, MO
10/1/89 to 12/31/89
(Removal) | Dechlorination
using the KPEG
process
EPA removal
contractor | Liquid (5
gallons) | Criteria: Dioxin - <1 ppb Input: Silvex - 10,000 ppm Dioxin equivalents - 24.18 ppb Output: Silvex - 32 ppb Dioxin equivalents - 0.068 ppb | Batch operation Retention time - 36 hours (including time of equipment breakdown) Temperature - 72°C pH - 13 Moisture content - 100% | | Built an on- site vacuum for emissions control Conteminated residual oil incinerated off-site | | | 7 | Scott Lumber, MO
12/89 to 9/91
(Removal) | Land Treatment RETEC Billings, MT | Soil (15,961
tons) | Input: 1500 - 1000 ppm - Total PAH 23 ppm - Benzo(a)pyrene Criteria: 500 ppm - Total PAH 14 ppm - Benzo(a)pyrene Output: 130 ppm Total PAH 8 ppm - Benzo(a)pyrene | Additives: Water phosphates Soil treated in 2 lifts 1st lift - 9 inches 2nd lift - 7 inches Cultivated approximately 1 to 2 times per week | Tilling Removal of rocks and debris | None | | ### TABLE E-2 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|---|-----------------------------|---|---|-----------------------------------|-------------------------|---| | 9 | Gila River Indian
Reservation, AZ
3/28/85 to 6/24/85
(Removal) | In situ chemical treatment (followed by anaerobic bio- remediation) EPA removal contractor | Soil (3,220 cy) | Input: Toxaphene - 1,470 ppm Ethyl parathion - 86 ppm Methyl parathion - 24 ppm Output: Toxaphene - 470 ppm Ethyl parathion - 56 ppm Methyl parathion - 56 ppm Methyl parathion - 3 ppm | pH: 10.2 to 11.8
Moisture: wet
Additives to soil:
Sodium hydroxide,
Water | | Bioremediation | | | 9 | Gila River Indian
Reservation, AZ
6/24/85 to 10/23/85
(Removal) | In situ anaerobic biological treatment (preceded by chemical treatment) EPA removal contractor | Soil (3,220 cy) | Toxaphene Input: 470 ppm Output: 180 ppm | pH: 8.3 to 9.8
Additives to soil:
Sulfuric acid,
manure, sludge | Tilling | Capped in place | The biological treatment would have been more successful if the neutralization after the chemical treatment had been more complete. The tearing of the plastic sheets covering the soils allowed air in and prevented anaerobic activity. | | 9 | Roseville Drums, CA
2/12/88 to 11/9/88
(Removal) | In situ
Bioremediation
EPA removal
contractor | Soil (14 cy) | Input: Dichlorobenzene - 4,000 ppm Phenol - 12,000 ppm Output: Dichlorobenzene - 140 ppm Phenol - 6 ppm | Additives to soil:
manure, water | Tilling | | | ## TABLE E-2 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|---|--|--|---|--|---|--| | 9 | Stanford Pesticide Site
#1, AZ
3/20/87 to 11/4/87
(Removal) | Chemical
treatment -
alkaline
hydrolysis
EPA removal
contractor | Soil (200 cy) | Methyl parathion Input: 24.2 ppm Output: 0.05 ppm | pH: 9.0
Moisture: wet
Additives to soil:
soda ash, water,
activated carbon | Tilling
(in situ, 3
times per
week) | | | | 9 | Poly-Carb, Inc., NV
7/22/87 to 8/16/88
(Removal) | Land treatment
and soil
washing
EPA removal
contractor | Soil (1,500 cy) | Input: Phenol 1,020 ppm o-cresol - 100 ppm m- and p-cresol - 409 ppm Output: Phenol - 1 ppm o-cresol - 1 ppm m- and p-Cresol - 0.92 ppm | Additives: water | Excavation Placement in double-lined pit Irrigation Tilling | Leachate collection and treatment with granular activated carbon | This treatment used both bioremediation and soil flushing in one step. | | 10 | Drexler-RAMCOR, WA 7/92 to 8/92 (removal) | Low temperature thermal desorption treatment. Thermally treat 3,000 tons of soil on-site up to 700°F. Four Seasons | Soil 3,000 tons
(approximately
3,000 cy) | Petroleum hydrocarbons Polynuclear Aromatics, BTEX (Benzene, Toluene, Ethylbenzene, Xylene 200 ppm TPH was target. Initial TPH was 70,000 ppm - (high) 15,000 - 20,000 ppm (average). Treated soil TPH was 100 - 200 ppm | 16 hours/day 12 to 15 tons/hr Operating temperature up to 700°F Vapors treated by catalytic oxidation | Excavation screening Removed material greater than 2 inches. Rock washing station for particles greater than 2 inches. Steam cleaned large rocks. Added water after treatment for dust suppression | Treated soil was backfilled back into the excavated areas on-site. Soil that did not meet the targets was re- treated. Wastewater was treated on-site through carbon filters. | Total cost
approximately
\$250,000. | #### **TABLE E-3** #### OTHER FEDERAL PROGRAMS: PERFORMANCE DATA ON COMPLETED PROJECTS Table E-3 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at non-Superfund sites. It is intended to supplement, not replace the information included in table C-1. | Region | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated | Key Contaminants | Operating | Materials
Handling | Residuats | | |--------|---|--|-------------------
--|--|---|--|--| | 5 | Saginaw Bay Confined
Disposal Facility, MI
October 1991 to June 4,
1992 (Army) | Soil washing;
Water with
flocculant and
surfactant as
an additive
Bermann USA
Stafford
Springs, CT | Sediment (150 cy) | PCBs Input Sediment = 1.6 mg/kg Output Sand = 0.20 mg/kg Output Organics = 11 mg/kg Output Fines = 4.4 mg/kg | 30 cy of sediment
treated per day | Required Dredging Screening Size Reduction | Residuals were left at the facility Wastewater discharged to confined disposal facility | Forced cold-weather
shut down is a
limitation | | 6# | Matagorda Island Af
Range, TX
10/92 to 2/28/93 | Ex situ bioremdiation; solid phase All constructed on abandoned runway. Bacteria added and mechanically mixed. Four USTs found contamination under one UST. CCC, Inc. San Antonio, TX | Soil (500 cy) | TPH, PAHS benzene-toluene- ethylbenzene-xylene (BTEX) TPH - 3,400 ppm BTEX - 41.3 ppm Criteria: Texas water commission standards 100 ppm for TPH 30 ppm for combined BTEX | Batch process Retention time: 3 months 9 inch layers treated. Ambient temperature bacterial added to waste | Excavated approximately 40 by 60 ft area. Constructed on poly barrier and clean sand base. Did some mixing. | Backfilled the
soil into the
excavation | Island is now a wildlife refuge, has an endangered species. | | 9 | Ft. Ord Marina, Fritzche
AAF Fire Drill Area, CA
Winter 1991
(Army) | Land farming | Soil (4,000 cy) | TCE, MEK, TPH, BTEX | Initial concentration > 1,000 ppm End concentration < 200 ppm | None | None | Gail Youngblood
408-242-8017 | | 9 | Marine Corps.
Mountain Warfare Center
Bridgeport, CA
8/89 to 11/89
(Navy) | Bioremediation
(ex situ); heap
pile bioreactor | Soil (7,000 cy) | PAHs (petroleum
hydrocarbons,
diesel), Metals
(Lead)
After 2 months of
operation the TPH
levels were 120 ppm | | Excavation | | Temperature, pressure
and moisture content
are monitored
Bill Major (DoD)
805-982-1808 | | | Site Name, State, Dates of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating | Materials
Handling
Required | Residuals
Management | Comments | |----|--|--|--|---|--|---|---------------------------------------|---| | 9# | Luke AFB, AZ
11/92 to 5/9 | Soil vapor
extraction with
air flushing
and thermal
oxidation of
off-gases
Jacobs
Engineering | Soil (35,000 cy) | VOCs (2-hexanone, 2-butanone, 4-methyl 2 pentanone, BTEX) Removed approximately 11,000 lbs of vapors and 4,000 lbs of condensate | In situ down to
100 feet | None | Vaports were
thermally
oxidized | Total petroleum hydrocarbons were present but were too heavy to volatilize. Would recommend combining SVE with in situ bioremediation to treat contaminants that could not be extracted with the SVE. | | 9 | Davis Monthan AFB, AZ
July 1991 to March 1992 | Bioremediation
(In situ soil) | Soil (440 cy) | PAHs (Petroleum
Hydrocarbones) | | | | | | | Naval Communication
Station, Scotland
February to October 1985
(Navy) | Bioremediation
In situ soil,
in situ ground
water | Soil,
Groundwater
Soil quantity
approximately
800 m ² in area,
depth unknown | TPH (No. 2 diesel
fuel) | Microorganisms
function best
between 20°C and
35°C. | Run-off water
collected in a
trench | None | The contaminated area had considerable slope, and the contaminated soil was a thin layer over a relatively impermeable rock substrate. | #### TABLE E-4 ### REMEDIAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES Table E-4 lists the sites at which innovative treatment technologies are used together with established or other innovative treatment technologies in treatment "trains." Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. | Dechlorination Followed by | | | Soil Washing Followed by (co | ntinued) | | |--------------------------------|-------------------------------------|--------|---|--|----------------| | Soil Washing | Myers Property | NJ | Incineration Incineration Solidification/Stabilization | Arkwood
South Cavalcade Street
Gould, Inc | AR
TX
OR | | Ex Situ Bioremediation Follows | lowed by | | | | N. 1811 | | Solidification/Stabilization | Whitmoyer Laboratories, OU 3 | PA | Solvent Extraction Followed b | <u>¥</u> | | | Solidification/Stabilization | J. H. Baxter | CA | | | | | Solidification/Stabilization | Cape Fear Wood Preserving | NC | Incineration | United Cresoting | TX | | Solidification/Stabilization | Oklahoma Refining Co. | OK | Solidification/Stabilization | O'Connor | ME | | Solidification/Stabilization | PAB Oil | LA
 | | | | | In Situ Flushing Followed b | <u>oy</u> | | Thermal Desorption Followed | | | | | | | Dechlorination | Arlington Blending & Packaging | TN | | In Situ Bioremediation | Peak Oil/Bay Drums, OU | FL | | Co., OU 1 | | | In Situ Bioremediation | Pester Burn Pond | KS | Dechlorination | Smith's Farm Brooks, OU 1 | KY | | In Situ Bioremediation | Idaho Pole Company | MT | Incineration of Organic Vapors | | NY | | In Situ Bioremediation | Montana Pole Company | MT | Incineration of Organic Vapors | | IL | | | | | Incineration of Organic Vapors | | MI | | Soil Vapor Extraction Follo | owed by | | Incineration of Organic Vapors Solidification/Stabilization | Martin Marietta (Denver Aerospace) Waldick Aerospace Devices | CO
NJ | | In Situ Bioremediation | Swope Oil & Chemical Co. | NJ | Solidification/Stabilization | USA Letterkenny (SE Area, OU 1) | PA | | In Situ Flushing | JADCO - Hughes | NC | Solidification/Stabilization | Acme Solvent Reclaiming, Inc., OU 2 | | | In Situ Flushing | Pasley Solvents and Chemicals, Inc. | NY . | Solidification/Stabilization | Carter Industries | MI | | Solidification/Stabilization | Genzale Plating Company, OU 1 | NY | Solidification/Stabilization | Martin Marietta (Denver Aerospace) | CO | | Soil Washing | Zanesville Well Field | ОН | Solidilloddol Sidolibanon | | - | | | | | | | | | Soil Washing Followed by | | | | | | | Bioremediation | Cabot Carbon/Koppers | FL | | | | | Bioremediation | Whitehouse Waste Oil Pits | FL | | | | | Bioremediation | Cape Fear Wood Preserving | NC | | | | | Bioremediation | Moss-American | WI | | | | | Bioremediation | Koppers (Oroville) | CA | 1 | | | #### TABLE E-5 #### REMOVAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES Table E-5 lists the at which innovative treatment technologies are used together with established or other innovative treatment technologies in treatment "trains." Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. #### **Chemical Treatment Followed by** | In Situ Bioremediation | Gila River Indian Reservation | AZ | |--|-------------------------------|----| | In Situ Flushing Followed by | Polycarb | NV | | Soil Washing Followed by Bioremediation | Southeastern Wood Preserving | MS | | Solvent Extraction Followed Solidification/Stabilization | by General Refining | GA |