

2003 AFCEE Technology Transfer Workshop San Antonio, Texas

Promoting Readiness through Environmental Stewardship

# In Situ Chemical Oxidation:

#### Performance, Practice, and Pitfalls



Richard A. Brown, Ph.D. ERM , Inc. February 25, 2003



# **ISCO** Presentation Topics

#### **Overview of ISCO (In Situ Chemical Oxidation)**

What oxidants are available

How are they applied

How to decide which to use

Cost

Performance

**Designing an ISCO Project** 



#### Available Oxidants

Ozone Hydrogen Peroxide Calcium Peroxide Sodium Persulfate Sodium/Potassium Permanganate





#### Molecular Weight - 48g Equiv. Weight - 24g Solubility - 600 mg/L Availability – On site generation 3-5% Air 8-12% O<sub>2</sub> Reactions Oxidation $O_3 + 2H^+ + 2e^- \otimes O_2 + H_2O = 2.07v$ $2OH^{-} + 2H^{+} + 2e^{-} \otimes 2H_{2}O^{-} E^{\circ} = 2.76v$ Hydroxyl Radical Formation $O_3 + H_2O \otimes O_2 + 2OH^{-1}$ (Slow) $2O_3 + 3H_2O_2 \otimes 4O_2 + 2OH + 2H_2O$ (Fast) Decomposition $2O_3 \otimes 3O_2 = 4HO \otimes 2H_2O + O_2$



Molecular Weight- 34g Equiv. Weight - 17g, 34g (OH) **Solubility - Miscible** Availability - 30%, 50% Solutions Reactions Oxidation  $2OH^{-} + 2H^{+} + 2e^{-} \otimes 2H_{2}O = 2.76v$  $H_2O_2 + 2H^+ + 2e^- \otimes 2H_2O = 1.77v$  $HO_2^- + H_2O + 2e^- \otimes 3OH^- E^\circ = 0.88v$ **Hydroxyl Radical Formation**  $H_2O_2 + Fe^{+2} \otimes Fe^{+3} + OH^{-1} + OH^{-1}$  $2O_3 + 3H_2O_2 \otimes 4O_2 + 2OH + 2H_2O$ **Decomposition**  $2H_2O_2 \otimes 2H_2O + O_2 + D$  (Above 11% steam is formed)  $4HO^{\cdot} \otimes 2H_{2}O + O_{2}$ 



### **Calcium Peroxide**

Molecular Weight- 72g Equiv. Weight - 36g Solubility – Slightly Soluble Availability – Powder 75% Purity Reactions Oxidation  $CaO_2 + 2H_2O + 2e^- \otimes Ca(OH)_2 + 2OH^- E^\circ = 0.9$  $HO_{2}^{-} + H_{2}O + 2e^{-} \otimes 3OH^{-} E^{\circ} = 0.88v$ **Reduction:**  $HO_{2}^{-} + OH^{-} \otimes O_{2} + H_{2}O + 2e^{-}$ **Hydrolysis**  $CaO_2 + H_2O + OH^{-} \otimes Ca(OH)_2 + HO_2^{-1}$ Decomposition  $2CaO_{2} + 2H_{2}O \otimes 2Ca(OH)_{2} + O_{2} + D$ 



Molecular Weight- 238.05g Equiv. Weight - 119.02g Solubility - 56 g/100 mL Availability – Crystalline Solid Reactions Oxidation  $S_2O_8^{=} + 2e^{-} \otimes 2SO_4^{=} E^{\circ} 2.01v$  $HSO_{5}^{-} + 2H^{+} + 2e^{-} \otimes HSO_{4}^{-} + H_{2}O = E^{\circ} 1.8v_{FST}$ Sulfate Radical Formation  $SO_{4}^{-} + e^{-} \otimes SO_{4}^{-} = E_{0} = 2.5v_{FST}$  $S_2O_8^{=} \otimes 2SO_4^{-1}$ Decomposition  $2Na_2S_2O_8 + 2H_2O \otimes O_2 + 2H_2SO_4 + 2Na_2SO_4$ Hydrolysis  $Na_2S_2O_8 + H_2O \otimes NaHSO_4 + NaHSO_5$ 



#### Molecular Weight- 158.04g K; 141.9 Na Equivalent Weight - 52.6g K; 47.3 Na Solubility - K 64g/l @ 20°C; Na >400 g/L @ 20°C Availability K Purple Crystalline Solid; Na – 40% Solution

#### Reactions

#### Oxidation $MnO_4^- + 4H^+ + 3e^- \otimes MnO_2 + 2H_2O = 1.695v$ Decomposition $4KMnO_4 + 4H^+ \otimes 3O_2 + 2H_2O + 4MnO_2 + 4K^+$



### **Application Methods**





#### **Circulation Methods**

#### Injection Only Galleries Wells Vertical Horizontal Trenches Direct injection

Injection & Recovery Galleries & Wells Trenches Conventional Wells Vertical Horizontal Recirculation Wells



### **Emplacement Methods**

Soil mixing Back-hoe, Excavator MITU (Trencher) Augers **Pressurized well injection Geoprobe** injection Pneumatic fracturing Channel creation **Direct injection** Hydraulic fracturing **Channel creation Direct injection** Jet grouting

Promoting Readiness through Environmental Stewardship

We



# **Push Tool Injection**





# **Reactivity of Oxidants**

| Oxidant                    | Amenable                | Reluctant                            | Recalcitrant                                                                |
|----------------------------|-------------------------|--------------------------------------|-----------------------------------------------------------------------------|
|                            | CVOC's                  | CVOCs                                | CVOCs                                                                       |
| Peroxide, Old              | PCE, TCE,               | DCA, CH <sub>2</sub> Cl <sub>2</sub> | TCA, CT,                                                                    |
| Fenton's                   | DCE, VC, CB             |                                      | CHCl₃                                                                       |
| Peroxide, New              | PCE, TCE,               | DCA, CH <sub>2</sub> Cl <sub>2</sub> | TCA, CT,                                                                    |
| Fenton's                   | DCE, VC, CB             |                                      | CHCl₃                                                                       |
| Calcium<br>Peroxide        | PCE,TCE,<br>DCE, VC, CB | TCA, $CH_2Cl_2$                      | CT, CHCl <sub>3</sub>                                                       |
| Potassium<br>Permanganate  | PCE, TCE,<br>DCE, VC,   |                                      | TCA, CT,<br>CHCl <sub>3</sub> , DCA,<br>CB, CH <sub>2</sub> Cl <sub>2</sub> |
| Sodium<br>Permanganate     | PCE, TCE,<br>DCE, VC,   |                                      | TCA, CT,<br>CHCl <sub>3</sub> , DCA,<br>CB, CH <sub>2</sub> Cl <sub>2</sub> |
| Sodium                     | PCE, TCE,               | DCA, $CH_2Cl_2$ ,                    | TCA, CT                                                                     |
| Persulfate, Fe             | DCE, VC, CB             | CHCl <sub>3</sub>                    |                                                                             |
| Sodium<br>Persulfate, Heat | All CVOCs               |                                      |                                                                             |



### **Reactivity of Oxidants**

|                         | В  | TEX | PAHs | Phenols | Explosives | PCBs | Pesticides |
|-------------------------|----|-----|------|---------|------------|------|------------|
| Peroxide, Old Fenton's  | Н  | Н   | М    | Н       | М          | L    | L          |
| Peroxide, New Fenton's  | Н  | Н   | М    | Н       | М          | L    | L          |
| Potassium Permanganate  | NR | Н   | Н    | Н       | Н          | L    | М          |
| Sodium Permanganate     | NR | Н   | Н    | Н       | Н          | L    | М          |
| Sodium Persulfate, Fe   | Н  | Н   | М    | Н       | М          | L    | М          |
| Sodium Persulfate, Heat | Н  | Н   | Н    | Н       | Н          | Н    | Н          |
| Ozone                   | М  | М   | Н    | Н       | Н          | Н    | Н          |

Heated Persulfate is the most reactive oxidant

### **Oxidant Usage**



[Oxidant]<sub>Required</sub> = [Stoichiometric Demand]<sub>Contaminant</sub> + [Soil Oxidant Demand] + [Metals]<sub>Red</sub> [Organic Carbon]<sub>Oxidizable</sub> [Decomposition]<sub>Oxidant</sub>

Decomposition and SOD are critical and often overlooked factors



### **SOD Soil Oxidant Demand**





#### **Decomposition Rates**





| Oxidant                    | Limitations                                               | Equivalent<br>Weight | Oxidant<br>Cost<br>\$/Lb | Oxidant Cost<br>\$/1000Equiv | Wt of<br>1000<br>Equiv, Lb | Chief Advavantage     |
|----------------------------|-----------------------------------------------------------|----------------------|--------------------------|------------------------------|----------------------------|-----------------------|
| Peroxide, Old<br>Fenton's  | Stability (10-95% decomp/hr), low pH                      | 34                   | \$0.75                   | \$56                         | 75                         | Reactivity, costs     |
| Peroxide, New<br>Fenton's  | Stability<br>(10-50% decomp/hr)                           | 34                   | \$0.75                   | \$56                         | 75                         | Reactivity, costs, pH |
| Calcium<br>Peroxide        | Not Soluble,<br>Reaction Speed                            | 36                   | \$3.00                   | \$237                        | 105.7                      | Stability             |
| Potassium<br>Permanganate  | Soil oxidant demand                                       | 52.6                 | \$1.40                   | \$162                        | 115.8                      | Ease of use,          |
| Sodium<br>Permanganate     | Soil oxidant demand                                       | 47.3                 | \$5.95                   | \$620                        | 104.2                      | Ease of use,          |
| Sodium<br>Persulfate, Fe   | Stability (10-25%<br>decomp/wk), low pH                   | 119                  | \$1.08                   | \$283                        | 262                        | No SOD, reactivity    |
| Sodium<br>Persulfate, Heat | Stability (20-50%<br>decomp/wk), low<br>pH, heating costs | 119                  | \$1.08                   | \$283                        | 262                        | Reactivity            |



| Oxidant                | Cost/1000<br>Equivalents | Cost @ Max<br>Decomp | Cost @ Min<br>Decomp |
|------------------------|--------------------------|----------------------|----------------------|
| Hydrogen Peroxide      | \$56                     | \$1,120              | \$70                 |
| Potassium Permanganate | \$162                    | \$165                | \$162                |
| Sodium Permaganate     | \$619                    | \$625                | \$619                |
| Sodium Persulfate      | \$262                    | \$350                | \$284                |
| Calcium Peroxide       | \$237                    | \$249                | \$239                |
| Ozone                  | \$42                     | \$55                 | \$45                 |

Peroxide is cheapest oxidant if it is stable.

Promoting Readiness through Environmental Stewardship



#### Impact of SOD on Costs

| Cost<br>\$/Lb. | Chemical Cost, \$/yd <sup>3</sup><br>(Xylene)  |                                                                         | \$/yd <sup>3</sup>                                                                                                                   |
|----------------|------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                | 10 mg/L                                        | 50 mg/Kg                                                                | 1000 mg/Kg                                                                                                                           |
| 1.10           | 0.58                                           | 8.70                                                                    | 164                                                                                                                                  |
| 1.10           | 0.58                                           | 8.70                                                                    | 164                                                                                                                                  |
| 1.50           | 0.40                                           | 3.59                                                                    | 92.1                                                                                                                                 |
| 1.50           | 6.00                                           | 9.19                                                                    | 97.2                                                                                                                                 |
|                |                                                |                                                                         |                                                                                                                                      |
|                | Cost<br>\$/Lb.<br>1.10<br>1.10<br>1.50<br>1.50 | Cost C   \$/Lb. 10 mg/L   1.10 0.58   1.10 0.58   1.50 0.40   1.50 6.00 | Cost<br>\$/Lb. Chemical Cost,<br>(Xylene)   10 mg/L 50 mg/Kg   1.10 0.58   1.10 0.58   1.10 0.58   1.50 0.40   1.50 6.00   1.50 0.40 |

Notes: Low SOD 0.1 g/kg, High SOD 3 g/kg

#### **High SOD affects Permanganate economics**



| Oxidant                | Solubility | Maxium Mass<br>Delivery, Kg/1000 L | Maxium Mass Delivery,<br>K Eq/1000 L |
|------------------------|------------|------------------------------------|--------------------------------------|
| Hydrogen Peroxide      | Miscible   | 100 (11%)                          | 3                                    |
| Potassium Permanganate | 6.40%      | 64                                 | 1.2                                  |
| Sodium Permaganate     | 40%        | 400                                | 9.36                                 |
| Sodium Persulfate      | 56%        | 560                                | 4.7                                  |
| Calcium Peroxide       | Insol.     | 100 (Slurry)                       | 2.7                                  |
| Ozone                  | 600 mg/L   | 0.6                                | 0.025                                |

Mass delivery is a function of solubility and equivalent weight



| Ovidant                | Stability, | Speed of    | T <sub>1/2</sub> @ Max | Max Travel Distance, m          |
|------------------------|------------|-------------|------------------------|---------------------------------|
| Oxidant                | % Loss/day | Reaction    | Decomp                 | Max Decomp, GW Flow @ 0.5 m/day |
| Hydrogen Peroxide*     | 10 - 95+   | 6-12 Hrs    | 10 Hrs                 | 1.2                             |
| Calcium Peroxide       | 1 - 5      | 2 - 7 Days  | 10 Days                | NA - Solid                      |
| Potassium Permanganate | 0.1 - 1.0  | 1 - 3 Days  | 50 Days                | 125                             |
| Sodium Permaganate     | 0.1 - 1.0  | 1 - 3 Days  | 50 Days                | 125                             |
| Sodium Persulfate      | 1 - 3      | 2 - 7 Days  | 17 Days                | 42.5                            |
| Ozone                  | 1 - 5      | 1 - 2 Hours | 10 Days                | NA - Depends on gas Flow        |

| Oxidant                | T <sub>1/2</sub> @ Min<br>Decomp | Max Travel Distance, m<br>Min Decomp, GW Flow @ 0.5 m/day |
|------------------------|----------------------------------|-----------------------------------------------------------|
| Hydrogen Peroxide      | 5 Days                           | 12.5                                                      |
| Calcium Peroxide       | 50 Days                          | NA - Solid                                                |
| Potassium Permanganate | 500 Days                         | 1250                                                      |
| Sodium Permaganate     | 500 Days                         | 1250                                                      |
| Sodium Persulfate      | 50 Days                          | 125                                                       |
| Ozone                  | 50 Days                          | NA - Depends on gas Flow                                  |

#### Permanganate is the most stable oxidant



# Design Approach

#### Select an oxidant

- Reactivity
- Cost
- Speed

#### Select application method

- Circulation
- Emplacement



### **Oxidant Selection – Cost**





## **Oxidant Selection – Speed**





### **Application Method Selection**





#### Selecting an Emplacement Method





### **Overview of ISCO**

#### ISCO Costs

#### **ISCO Success**













Many oxidants are available

A wide range of contaminants are treatable Selecting the right oxidant is important

Reactivity

Cost

**Competing reactions** 

**Good design ensures success** 

Choose the best application method

Push Tools are an important application method

There is still room for development