Skip to main content
U.S. flag

An official website of the United States government

information

We are making some changes to CLU-IN. If you have any feedback or questions, please contact us.

Share |
Connect | Archived Internet Seminars and Podcasts News Feeds (RSS) TechDirect and Newsletters

Vapor Intrusion

Site Investigation Tools

Figure 1. Example conceptual Site Model (EPA, 2015).

Figure 1. Example conceptual Site Model (EPA, 2015).

There are many tools available to environmental practitioners for investigating a site for vapor intrusion. As with any site investigation, an important early step is to develop a conceptual site model (CSM)1. One critical element of the CSM is an understanding of the type of volatile chemical that has been released into the subsurface. Some types of chemicals, such as petroleum hydrocarbons, degrade rapidly under aerobic conditions in the vadose zone, limiting the potential for vapor intrusion. Thus, the type of chemical present should inform the investigation strategy (ITRC, 2014 and EPA, 2015).

EPA's 2015 Vapor Intrusion Technical Guide recommends that the planning and data review team develop an initial CSM for vapor intrusion when the preliminary analysis indicates the presence of subsurface contamination with vapor-forming chemicals underlying or near buildings (Figure 1). This CSM is used to guide planning and scoping of the investigation and is updated and refined as additional information and insights are generated.

The vapor intrusion pathway is generally assessed by collecting, weighing, and evaluating multiple lines of evidence (e.g., hydrogeologic information in addition to soil, groundwater or vapor sampling data). Predictive modeling can be used to develop not only the CSM but also to plan appropriate sampling. Building design should be evaluated to determine how it affects the potential for vapor intrusion and vapor intrusion pathways. Click on the following sections for summaries of different lines of evidence for vapor intrusion and resources for further information:


Helpful Definitions

  1. Conceptual site model (CSM): A CSM is a picture and narrative of the site contamination: how it got there, whether or not it is migrating or degrading, its distribution across the site, who might be exposed to it, and what risk-reduction strategies are most feasible. ↩

  2. Conceptual site model (CSM): A CSM is a picture and narrative of the site contamination: how it got there, whether or not it is migrating or degrading, its distribution across the site, who might be exposed to it, and what risk-reduction strategies are most feasible.  ↩

  3. Active Gas Soil Sampling: Active soil gas sampling involves the collection of soil gas by pumping a volume of soil gas from the target zone. Samples can be analyzed immediately. Active soil gas sampling facilitates rapid assessment/expedited characterization if volatile organic compounds are primary constituents of concern for vapor intrusion. Soil gas samples can be collected with temporary or permanent sampling probes. Probes can be installed either using augered soil borings or a direct push method such as the Geoprobe�. The sampling tubing typically has a small diameter (<1/4 inch inside diameter) and made of copper, stainless steel or nylon. The tubing runs from the ground surface to the target depth. Sampling can be done at a single target depth or done in clusters where more than one sampling probe is installed at several target depths to define a vertical profile of soil gas concentrations (EPA, 2015 and EPA Region 5, 2020). ↩

  4. Active Gas Soil Sampling: Active soil gas sampling involves the collection of soil gas by pumping a volume of soil gas from the target zone. Samples can be analyzed immediately. Active soil gas sampling facilitates rapid assessment/expedited characterization if volatile organic compounds are primary constituents of concern for vapor intrusion. Soil gas samples can be collected with temporary or permanent sampling probes. Probes can be installed either using augered soil borings or a direct push method such as the Geoprobe�. The sampling tubing typically has a small diameter (<1/4 inch inside diameter) and made of copper, stainless steel or nylon. The tubing runs from the ground surface to the target depth. Sampling can be done at a single target depth or done in clusters where more than one sampling probe is installed at several target depths to define a vertical profile of soil gas concentrations (EPA, 2015 and EPA Region 5, 2020). ↩

  5. Passive Gas Soil Sampling: Passive soil gas surveys deploy absorbent materials in the ground and left for days or weeks. Contaminant vapors are collected on the absorbent material via the ambient flow of soil gas. An advantage to passive sampling is that the samplers can be placed in locations where power is unavailable and can be left unattended for long periods of time (EPA, 2015 and EPA Region 5, 2020). ↩

  6. Passive Gas Soil Sampling: Passive soil gas surveys deploy absorbent materials in the ground and left for days or weeks. Contaminant vapors are collected on the absorbent material via the ambient flow of soil gas. An advantage to passive sampling is that the samplers can be placed in locations where power is unavailable and can be left unattended for long periods of time (EPA, 2015 and EPA Region 5, 2020). ↩

  7. Perfluorocarbons (PFCs): Perfluorocarbons (PFCs) are compounds found at low levels in the atmosphere and present no identified danger to humans if inhaled or ingested. They are chemically inactive, nontoxic and nonflammable (Brookhaven National Laboratory). ↩

  8. Perfluorocarbons (PFCs): Perfluorocarbons (PFCs) are compounds found at low levels in the atmosphere and present no identified danger to humans if inhaled or ingested. They are chemically inactive, nontoxic and nonflammable (Brookhaven National Laboratory). ↩